Arguments#
MAIN MAMMOTH ARGS
- --datasetstr (with underscores replaced by dashes)
Help: Which dataset to perform experiments on.
Default:
None
Choices:
seq-tinyimg, seq-tinyimg-r, seq-cifar10-224-rs, seq-mit67, seq-cifar100-224-rs, seq-eurosat-rgb, seq-resisc45, seq-cub200, seq-mnist, seq-cifar10-224, seq-imagenet-r, seq-isic, seq-cifar100, seq-cars196, seq-cub200-rs, rot-mnist, seq-cifar100-224, perm-mnist, seq-cropdisease, seq-cifar10, mnist-360, seq-chestx
- --modelstr (with underscores replaced by dashes)
Help: Model name.
Default:
None
Choices:
lwf-mc, xder-ce, derpp-lider, clip, second-stage-starprompt, gem, xder, dap, der, idefics, sgd, mer, llava, icarl-lider, joint-gcl, ranpac, ewc-on, puridiver, slca, l2p, hal, ccic, pnn, starprompt, gdumb-lider, agem, attriclip, dualprompt, fdr, si, xder-rpc, gss, er-ace-lider, moe-adapters, twf, icarl, er-tricks, lwf, er-ace-tricks, lucir, rpc, agem-r, bic, derpp, er-ace, cgil, er, er-ace-aer-abs, joint, first-stage-starprompt, gdumb, coda-prompt
- --backbonestr (with underscores replaced by dashes)
Help: Backbone network name.
Default:
None
Choices:
resnet50, resnet50_pt, mnistmlp, vit, resnet18, resnet34
- --load_best_argsunknown
Help: (deprecated) Loads the best arguments for each method, dataset and memory buffer. NOTE: This option is deprecated and not up to date.
Default:
False
- --dataset_configstr
Help: The configuration used for this dataset (e.g., number of tasks, transforms, backbone architecture, etc.).The available configurations are defined in the datasets/config/<dataset> folder.
Default:
None
EXPERIMENT-RELATED ARGS
Experiment arguments
Arguments used to define the experiment settings.
- --lrfloat
Help: Learning rate. This should either be set as default by the model (with set_defaults), by the dataset (with set_default_from_args, see utils), or with –lr=<value>.
Default:
None
- --batch_sizeint
Help: Batch size.
Default:
None
- --label_percfloat
Help: Percentage in (0-1] of labeled examples per task.
Default:
1
- --label_perc_by_classfloat
Help: Percentage in (0-1] of labeled examples per task.
Default:
1
- --jointint
Help: Train model on Joint (single task)?
Default:
0
Choices:
0, 1
- --eval_futureint
Help: Evaluate future tasks?
Default:
0
Choices:
0, 1
Validation and fitting arguments
Arguments used to define the validation strategy and the method used to fit the model.
- --validationfloat
Help: Percentage of samples FOR EACH CLASS drawn from the training set to build the validation set.
Default:
None
- --validation_modestr
Help: Mode used for validation. Must be used in combination with validation argument. Possible values: - current: uses only the current task for validation (default). - complete: uses data from both current and past tasks for validation.
Default:
current
Choices:
complete, current
- --fitting_modestr
Help: Strategy used for fitting the model. Possible values: - epochs: fits the model for a fixed number of epochs (default). NOTE: this option is controlled by the n_epochs argument. - iters: fits the model for a fixed number of iterations. NOTE: this option is controlled by the n_iters argument. - early_stopping: fits the model until early stopping criteria are met. This option requires a validation set (see validation argument). The early stopping criteria are: if the validation loss does not decrease for early_stopping_patience epochs, the training stops.
Default:
epochs
Choices:
epochs, iters, time, early_stopping
- --early_stopping_patienceint
Help: Number of epochs to wait before stopping the training if the validation loss does not decrease. Used only if fitting_mode=early_stopping.
Default:
5
- --early_stopping_metricstr
Help: Metric used for early stopping. Used only if fitting_mode=early_stopping.
Default:
loss
Choices:
loss, accuracy
- --early_stopping_freqint
Help: Frequency of validation evaluation. Used only if fitting_mode=early_stopping.
Default:
1
- --early_stopping_epsilonfloat
Help: Minimum improvement required to consider a new best model. Used only if fitting_mode=early_stopping.
Default:
1e-06
- --n_epochsint
Help: Number of epochs. Used only if fitting_mode=epochs.
Default:
None
- --n_itersint
Help: Number of iterations. Used only if fitting_mode=iters.
Default:
None
Optimizer and learning rate scheduler arguments
Arguments used to define the optimizer and the learning rate scheduler.
- --optimizerstr
Help: Optimizer.
Default:
sgd
Choices:
sgd, adam, adamw
- --optim_wdfloat
Help: optimizer weight decay.
Default:
0.0
- --optim_momfloat
Help: optimizer momentum.
Default:
0.0
- --optim_nesterov0|1|True|False -> bool
Help: optimizer nesterov momentum.
Default:
0
- --lr_schedulerstr
Help: Learning rate scheduler.
Default:
None
- --scheduler_modestr
Help: Scheduler mode. Possible values: - epoch: the scheduler is called at the end of each epoch. - iter: the scheduler is called at the end of each iteration.
Default:
epoch
Choices:
epoch, iter
- --lr_milestonesint
Help: Learning rate scheduler milestones (used if lr_scheduler=multisteplr).
Default:
[]
- --sched_multistep_lr_gammafloat
Help: Learning rate scheduler gamma (used if lr_scheduler=multisteplr).
Default:
0.1
Noise arguments
Arguments used to define the noisy-label settings.
- --noise_typefield with aliases (str)
Help: Type of noise to apply. The symmetric type is supported by all datasets, while the asymmetric must be supported explicitly by the dataset (see datasets/utils/label_noise).
Default:
symmetric
- --noise_ratefloat
Help: Noise rate in [0-1].
Default:
0
- --disable_noisy_labels_cache0|1|True|False -> bool
Help: Disable caching the noisy label targets? NOTE: if the seed is not set, the noisy labels will be different at each run with this option disabled.
Default:
0
- --cache_path_noisy_labelsstr
Help: Path where to save the noisy labels cache. The path is relative to the base_path.
Default:
noisy_labels
MANAGEMENT ARGS
Management arguments
Generic arguments to manage the experiment reproducibility, logging, debugging, etc.
- --seedint
Help: The random seed. If not provided, a random seed will be used.
Default:
None
- --permute_classes0|1|True|False -> bool
Help: Permute classes before splitting into tasks? This applies the seed before permuting if the seed argument is present.
Default:
0
- --base_pathstr
Help: The base path where to save datasets, logs, results.
Default:
./data/
- --results_pathstr
Help: The path where to save the results. NOTE: this path is relative to base_path.
Default:
results/
- --devicestr
Help: The device (or devices) available to use for training. More than one device can be specified by separating them with a comma. If not provided, the code will use the least used GPU available (if there are any), otherwise the CPU. MPS is supported and is automatically used if no GPU is available and MPS is supported. If more than one GPU is available, Mammoth will use the least used one if –distributed=no.
Default:
None
- --notesstr
Help: Helper argument to include notes for this run. Example: distinguish between different versions of a model and allow separation of results
Default:
None
- --eval_epochsint
Help: Perform inference on validation every eval_epochs epochs. If not provided, the model is evaluated ONLY at the end of each task.
Default:
None
- --non_verbose0|1|True|False -> bool
Help: Make progress bars non verbose
Default:
0
- --disable_log0|1|True|False -> bool
Help: Disable logging?
Default:
0
- --num_workersint
Help: Number of workers for the dataloaders (default=infer from number of cpus).
Default:
None
- --enable_other_metrics0|1|True|False -> bool
Help: Enable computing additional metrics: forward and backward transfer.
Default:
0
- --debug_mode0|1|True|False -> bool
Help: Run only a few training steps per epoch. This also disables logging on wandb.
Default:
0
- --inference_only0|1|True|False -> bool
Help: Perform inference only for each task (no training).
Default:
0
- --code_optimizationint
Help: Optimization level for the code.0: no optimization.1: Use TF32, if available.2: Use BF16, if available.3: Use BF16 and torch.compile. BEWARE: torch.compile may break your code if you change the model after the first run! Use with caution.
Default:
0
Choices:
0, 1, 2, 3
- --distributedstr
Help: Enable distributed training?
Default:
no
Choices:
no, dp, ddp
- --savecheckstr
Help: Save checkpoint every task or at the end of the training (last).
Default:
None
Choices:
last, task
- --loadcheckstr
Help: Path of the checkpoint to load (.pt file for the specific task)
Default:
None
- --ckpt_namestr
Help: (optional) checkpoint save name.
Default:
None
- --start_fromint
Help: Task to start from
Default:
None
- --stop_afterint
Help: Task limit
Default:
None
Wandb arguments
Arguments to manage logging on Wandb.
- --wandb_namestr
Help: Wandb name for this run. Overrides the default name (args.model).
Default:
None
- --wandb_entitystr
Help: Wandb entity
Default:
None
- --wandb_projectstr
Help: Wandb project name
Default:
None
REEHARSAL-ONLY ARGS
- --buffer_sizeint
Help: The size of the memory buffer.
Default:
None
- --minibatch_sizeint
Help: The batch size of the memory buffer.
Default:
None