GDUMB LIDER#
Arguments#
Options
- --alpha_lip_lambdafloat
Help: Lambda parameter for lipschitz minimization loss on buffer samples
Default:
0
- --beta_lip_lambdafloat
Help: Lambda parameter for lipschitz budget distribution loss
Default:
0
- --headless_init_actstr
Help: None
Default:
relu
Choices:
relu, lrelu
- --grad_iter_stepint
Help: Step from which to enable gradient computation.
Default:
-2
- --maxlrfloat
Help: Max learning rate.
Default:
0.05
- --minlrfloat
Help: Min learning rate.
Default:
0.0005
- --fitting_epochsint
Help: Number of epochs to fit the buffer.
Default:
256
- --cutmix_alphafloat
Help: Alpha parameter for cutmix
Default:
1.0
Rehearsal arguments
Arguments shared by all rehearsal-based methods.
- --buffer_sizeint
Help: The size of the memory buffer.
Default:
None
- --minibatch_sizeint
Help: The batch size of the memory buffer.
Default:
None
Classes#
- class models.gdumb_lider.GDumbLider(backbone, loss, args, transform, dataset=None)[source]#
Bases:
LiderOptimizer
GDumb learns an empty model only on the buffer. Treated with LiDER!