SEQ CIFAR100 224#
Classes#
- class datasets.seq_cifar100_224.SequentialCIFAR100224(args, transform_type='weak')[source]#
- Bases: - ContinualDataset- The Sequential CIFAR100 dataset with 224x224 resolution with ViT-B/16. - Parameters:
- NAME (str) – name of the dataset. 
- SETTING (str) – setting of the dataset. 
- N_CLASSES_PER_TASK (int) – number of classes per task. 
- N_TASKS (int) – number of tasks. 
- N_CLASSES (int) – number of classes. 
- SIZE (tuple) – size of the images. 
- MEAN (tuple) – mean of the dataset. 
- STD (tuple) – standard deviation of the dataset. 
- TRANSFORM (torchvision.transforms) – transformation to apply to the data. 
- TEST_TRANSFORM (torchvision.transforms) – transformation to apply to the test data. 
 
 - MEAN = (0.485, 0.456, 0.406)#
 - STD = (0.229, 0.224, 0.225)#
 - TEST_TRANSFORM = Compose( Resize(size=224, interpolation=bicubic, max_size=None, antialias=True) ToTensor() Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) )#
 - TRANSFORM = Compose( RandomResizedCrop(size=(224, 224), scale=(0.08, 1.0), ratio=(0.75, 1.3333), interpolation=bicubic, antialias=True) RandomHorizontalFlip(p=0.5) ToTensor() Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) )#