SEQ CIFAR100 224#

Classes#

class datasets.seq_cifar100_224.SequentialCIFAR100224(args, transform_type='weak')[source]#

Bases: ContinualDataset

The Sequential CIFAR100 dataset with 224x224 resolution with ViT-B/16.

Parameters:
  • NAME (str) – name of the dataset.

  • SETTING (str) – setting of the dataset.

  • N_CLASSES_PER_TASK (int) – number of classes per task.

  • N_TASKS (int) – number of tasks.

  • N_CLASSES (int) – number of classes.

  • SIZE (tuple) – size of the images.

  • MEAN (tuple) – mean of the dataset.

  • STD (tuple) – standard deviation of the dataset.

  • TRANSFORM (torchvision.transforms) – transformation to apply to the data.

  • TEST_TRANSFORM (torchvision.transforms) – transformation to apply to the test data.

MEAN = (0.485, 0.456, 0.406)#
NAME: str = 'seq-cifar100-224'#
N_CLASSES: int = 100#
N_CLASSES_PER_TASK: int = 10#
N_TASKS: int = 10#
SETTING: str = 'class-il'#
SIZE: Tuple[int] = (224, 224)#
STD = (0.229, 0.224, 0.225)#
TEST_TRANSFORM = Compose(     Resize(size=224, interpolation=bicubic, max_size=None, antialias=True)     ToTensor()     Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) )#
TRANSFORM = Compose(     RandomResizedCrop(size=(224, 224), scale=(0.08, 1.0), ratio=(0.75, 1.3333), interpolation=bicubic, antialias=True)     RandomHorizontalFlip(p=0.5)     ToTensor()     Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) )#
get_backbone()[source]#
get_batch_size()[source]#
get_class_names()[source]#
get_data_loaders()[source]#
Return type:

Tuple[DataLoader, DataLoader]

static get_denormalization_transform()[source]#
get_epochs()[source]#
static get_loss()[source]#
static get_normalization_transform()[source]#
static get_prompt_templates()[source]#
static get_transform()[source]#