SEQ CUB200 RS#

Implements the Sequential CUB200 Dataset, as used in Transfer without Forgetting (Version with ResNet50 as backbone).

Classes#

class datasets.seq_cub200_rs.MyCUB200RS(root, train=True, transform=None, target_transform=None, download=True)[source]#

Bases: MyCUB200

MEAN = (0.4856, 0.4994, 0.4324)#
STD = (0.2272, 0.2226, 0.2613)#
TEST_TRANSFORM = Compose(     Resize(size=224, interpolation=bilinear, max_size=None, antialias=True)     ToTensor()     Normalize(mean=(0.4856, 0.4994, 0.4324), std=(0.2272, 0.2226, 0.2613)) )#
class datasets.seq_cub200_rs.SequentialCUB200RS(args)[source]#

Bases: SequentialCUB200

Sequential CUB200 Dataset. Version with ResNet50 (as in Transfer without Forgetting)

Parameters:
  • NAME (str) – name of the dataset.

  • SETTING (str) – setting of the dataset.

  • N_CLASSES_PER_TASK (int) – number of classes per task.

  • N_TASKS (int) – number of tasks.

  • SIZE (tuple) – size of the images.

  • MEAN (tuple) – mean of the dataset.

  • STD (tuple) – standard deviation of the dataset.

  • TRANSFORM (torchvision.transforms) – transformation to apply to the data.

  • TEST_TRANSFORM (torchvision.transforms) – transformation to apply to the test data.

MEAN = (0.4856, 0.4994, 0.4324)#
NAME: str = 'seq-cub200-rs'#
N_CLASSES_PER_TASK: int = 20#
N_TASKS: int = 10#
SETTING: str = 'class-il'#
SIZE: Tuple[int] = (224, 224)#
STD = (0.2272, 0.2226, 0.2613)#
TEST_TRANSFORM = Compose(     Resize(size=224, interpolation=bilinear, max_size=None, antialias=True)     ToTensor()     Normalize(mean=(0.4856, 0.4994, 0.4324), std=(0.2272, 0.2226, 0.2613)) )#
TRANSFORM = Compose(     Resize(size=224, interpolation=bilinear, max_size=None, antialias=True)     RandomCrop(size=(224, 224), padding=4)     RandomHorizontalFlip(p=0.5)     ToTensor()     Normalize(mean=(0.4856, 0.4994, 0.4324), std=(0.2272, 0.2226, 0.2613)) )#
get_backbone()[source]#
get_batch_size()[source]#
get_data_loaders()[source]#
Return type:

Tuple[DataLoader, DataLoader]

static get_denormalization_transform()[source]#
get_epochs()[source]#
static get_normalization_transform()[source]#
static get_transform()[source]#