backbone#
Module attributes and functions#
- class backbone.MammothBackbone(**kwargs)[source]#
A backbone module for the Mammoth model.
- Parameters:
**kwargs – additional keyword arguments
- features()[source]#
Get the features of the input tensor (same as forward but with returnt=’features’).
- Return type:
Tensor
- get_params()[source]#
Returns all the parameters concatenated in a single tensor.
- Return type:
Tensor
- get_grads_list()#
Returns a list containing the gradients (a tensor for each layer).
- features(x)[source]#
Compute the features of the input tensor.
- Parameters:
x (Tensor) – input tensor
- Returns:
features tensor
- Return type:
Tensor
- forward(x, returnt='out')[source]#
Compute a forward pass.
- Parameters:
x (Tensor) – input tensor (batch_size, *input_shape)
returnt – return type (a string among out, features, both, or all)
- Returns:
output tensor
- Return type:
Tensor
- get_grads()[source]#
Returns all the gradients concatenated in a single tensor.
- Returns:
gradients tensor
- Return type:
Tensor
- get_params()[source]#
Returns all the parameters concatenated in a single tensor.
- Returns:
parameters tensor
- Return type:
Tensor
- set_grads(new_grads)[source]#
Sets the gradients of all parameters.
- Parameters:
new_params – concatenated values to be set
- backbone.get_backbone(args)[source]#
Build the backbone network from the registered networks.
- Parameters:
args (Namespace) – the arguments which contains the –backbone attribute and the additional arguments required by the backbone network
- Returns:
the backbone model
- Return type:
- backbone.get_backbone_class(name, return_args=False)[source]#
Get the backbone network class from the registered networks.
- Parameters:
name (str) – the name of the backbone network
return_args – whether to return the parsable arguments of the backbone network
- Returns:
the backbone class
- Return type:
- backbone.num_flat_features(x)[source]#
Computes the total number of items except the first (batch) dimension.
- Parameters:
x (Tensor) – input tensor
- Returns:
number of item from the second dimension onward
- Return type:
- backbone.register_backbone(name)[source]#
Decorator to register a backbone network for use in a Dataset. The decorator may be used on a class that inherits from MammothBackbone or on a function that returns a MammothBackbone instance. The registered model can be accessed using the get_backbone function and can include additional keyword arguments to be set during parsing.
The arguments can be inferred by the signature of the backbone network’s class. The value of the argument is the default value. If the default is set to Parameter.empty, the argument is required. If the default is set to None, the argument is optional. The type of the argument is inferred from the default value (default is str).
- backbone.xavier(m)[source]#
Applies Xavier initialization to linear modules.
- Parameters:
m (Module) – the module to be initialized
- Example::
>>> net = nn.Sequential(nn.Linear(10, 10), nn.ReLU()) >>> net.apply(xavier)