TWF#
Arguments#
Options
- --der_alphafloat
Help: Distillation alpha hyperparameter for student stream (alpha in the paper).
Default:
None
- --der_betafloat
Help: Distillation beta hyperparameter (beta in the paper).
Default:
None
- --lambda_fpfloat
Help: weight of feature propagation loss replay
Default:
None
- --lambda_diverse_lossfloat
Help: Diverse loss hyperparameter.
Default:
0
- --lambda_fp_replayfloat
Help: weight of feature propagation loss replay
Default:
0
- --resize_maps0|1|True|False -> bool
Help: Apply downscale and upscale to feature maps before save in buffer?
Default:
0
- --min_resize_thresholdint
Help: Min size of feature maps to be resized?
Default:
16
- --virtual_bs_iterationsint
Help: virtual batch size iterations
Default:
1
Rehearsal arguments
Arguments shared by all rehearsal-based methods.
- --buffer_sizeint
Help: The size of the memory buffer.
Default:
None
- --minibatch_sizeint
Help: The batch size of the memory buffer.
Default:
None
Classes#
- class models.twf.TwF(backbone, loss, args, transform, dataset=None)[source]#
Bases:
ContinualModel
Transfer without Forgetting: double-branch distillation + inter-branch skip attention.