PURIDIVER#
Arguments#
Options
- --use_bn_classifierint
Help: Use batch normalization in the classifier?
Default:
1
Choices:
0, 1
- --freeze_buffer_after_firstint
Help: Freeze buffer after first task (i.e., simulate online update of the buffer, useful for multi-epoch)?
Default:
0
Choices:
0, 1
- --initial_alphafloat
Help: None
Default:
0.5
- --disable_train_augint
Help: Disable training augmentation?
Default:
1
Choices:
0, 1
- --buffer_fitting_epochsint
Help: Number of epochs to fit on buffer
Default:
255
- --warmup_buffer_fitting_epochsint
Help: Number of warmup epochs during which fit with simple CE
Default:
10
- --enable_cutmixint
Help: Enable cutmix augmentation?
Default:
1
Choices:
0, 1
- --cutmix_probfloat
Help: Cutmix probability
Default:
0.5
Rehearsal arguments
Arguments shared by all rehearsal-based methods.
- --buffer_sizeint
Help: The size of the memory buffer.
Default:
None
- --minibatch_sizeint
Help: The batch size of the memory buffer.
Default:
None
Classes#
- class models.puridiver.CustomDataset(data, targets, transform=None, probs=None, extra=None, device='cpu')[source]#
Bases:
Dataset
- class models.puridiver.PuriDivER(backbone, loss, args, transform, dataset=None)[source]#
Bases:
ContinualModel
PuriDivER: Online Continual Learning on a Contaminated Data Stream with Blurry Task Boundaries.
Functions#
- models.puridiver.get_dataloader_from_buffer(args, buffer, batch_size, shuffle=False, transform=None)[source]#