SEQ CIFAR10 224 RS#
Classes#
- class datasets.seq_cifar10_224_rs.SequentialCIFAR10224RS(args)[source]#
Bases:
ContinualDataset
Sequential CIFAR10 Dataset. The images are resized to 224x224. Version with ResNet50 backbone.
- Parameters:
NAME (str) – name of the dataset.
SETTING (str) – setting of the dataset.
N_CLASSES_PER_TASK (int) – number of classes per task.
N_TASKS (int) – number of tasks.
N_CLASSES (int) – number of classes.
SIZE (tuple) – size of the images.
MEAN (tuple) – mean of the dataset.
STD (tuple) – standard deviation of the dataset.
TRANSFORM (torchvision.transforms) – transformations to apply to the dataset.
- MEAN = (0.4914, 0.4822, 0.4465)#
- STD = (0.247, 0.2435, 0.2615)#
- TEST_TRANSFORM = Compose( Resize(size=224, interpolation=bilinear, max_size=None, antialias=True) ToTensor() Normalize(mean=(0.4914, 0.4822, 0.4465), std=(0.247, 0.2435, 0.2615)) )#
- TRANSFORM = Compose( Resize(size=224, interpolation=bilinear, max_size=None, antialias=True) RandomCrop(size=(224, 224), padding=28) RandomHorizontalFlip(p=0.5) ToTensor() Normalize(mean=(0.4914, 0.4822, 0.4465), std=(0.247, 0.2435, 0.2615)) )#