ZSCL#
Arguments#
Options
- --clip_backbonestr
Help: Clip backbone
Default:
ViT-L/14
Choices:
ViT-B/16, ViT-L/14
- --prompt_templatestr
Help: Template string
Default:
a good photo of a {}.
- --weint
Help: Whether to use weight averaging
Default:
1
- --avg_freqint
Help: Frequency of weight averaging
Default:
100
- --lsfloat
Help: Label smoothing
Default:
0.2
Implementation of ZSCL from the ICCV 2023 paper “Preventing zero-shot transfer degradation in continual learning of vision-language models” Paper: https://arxiv.org/abs/2303.06628 Original code: https://github.com/Thunderbeee/ZSCL
Classes#
- class models.zscl.ZSCL(backbone, loss, args, transform, dataset=None)[source]#
Bases:
FutureModel
ZSCL – Preventing zero-shot transfer degradation in continual learning of vision-language models.