ZSCL#
Arguments#
Options
- --clip_backbonestr
 Help: Clip backbone
Default:
ViT-L/14Choices:
ViT-B/16, ViT-L/14
- --prompt_templatestr
 Help: Template string
Default:
a good photo of a {}.
- --weint
 Help: Whether to use weight averaging
Default:
1
- --avg_freqint
 Help: Frequency of weight averaging
Default:
100
- --lsfloat
 Help: Label smoothing
Default:
0.2
Implementation of ZSCL from the ICCV 2023 paper “Preventing zero-shot transfer degradation in continual learning of vision-language models” Paper: https://arxiv.org/abs/2303.06628 Original code: https://github.com/Thunderbeee/ZSCL
Classes#
- class models.zscl.ZSCL(backbone, loss, args, transform, dataset=None)[source]#
 Bases:
FutureModelZSCL – Preventing zero-shot transfer degradation in continual learning of vision-language models.