ZSCL#

Arguments#

Options

--clip_backbonestr

Help: Clip backbone

  • Default: ViT-L/14

  • Choices: ViT-B/16, ViT-L/14

--prompt_templatestr

Help: Template string

  • Default: a good photo of a {}.

--weint

Help: Whether to use weight averaging

  • Default: 1

--avg_freqint

Help: Frequency of weight averaging

  • Default: 100

--lsfloat

Help: Label smoothing

  • Default: 0.2

Implementation of ZSCL from the ICCV 2023 paper “Preventing zero-shot transfer degradation in continual learning of vision-language models” Paper: https://arxiv.org/abs/2303.06628 Original code: https://github.com/Thunderbeee/ZSCL

Classes#

class models.zscl.ZSCL(backbone, loss, args, transform, dataset=None)[source]#

Bases: FutureModel

ZSCL – Preventing zero-shot transfer degradation in continual learning of vision-language models.

COMPATIBILITY: List[str] = ['class-il', 'domain-il', 'task-il', 'general-continual']#
NAME: str = 'zscl'#
begin_task(dataset)[source]#
change_transform(dataset)[source]#
distillation(t, s, T=2)[source]#
end_task(dataset)[source]#
forward(image)[source]#
future_forward(image)[source]#
get_optimizer()[source]#
get_parameters()[source]#
static get_parser(parser)[source]#
Return type:

ArgumentParser

merge_we(model_0, model_1, sma_count)[source]#
observe(inputs, labels, not_aug_inputs, epoch=None)[source]#