RANPAC#
Arguments#
Options
- --rp_sizeint
Help: size of the random projection layer (L in the paper)
Default:
10000
Slow Learner with Classifier Alignment.
Note
SLCA USES A CUSTOM BACKBONE (see feature_extractor_type argument)
- param –feature_extractor_type:
the type of convnet to use. vit-b-p16 is the default: ViT-B/16 pretrained on Imagenet 21k (NO finetuning on ImageNet 1k)
Classes#
- class models.ranpac.RanPAC(backbone, loss, args, transform, dataset=None)[source]#
Bases:
ContinualModel
RanPAC: Random Projections and Pre-trained Models for Continual Learning.
- net: RanPAC_Model#