CCIC#
Arguments#
Options
- --alphafloat
Help: Unsupervised loss weight.
Default:
0.5
- --knn_kint
Help: k of kNN.
Default:
2
- --memory_penaltyfloat
Help: Unsupervised penalty weight.
Default:
1.0
- --k_augint
Help: Number of augumentation to compute label predictions.
Default:
3
- --mixmatch_alphafloat
Help: Regularization weight.
Default:
0.5
- --sharp_tempfloat
Help: Temperature for sharpening.
Default:
0.5
- --mixup_alphafloat
Help: None
Default:
0.75
Rehearsal arguments
Arguments shared by all rehearsal-based methods.
- --buffer_sizeint
Help: The size of the memory buffer.
Default:
None
- --minibatch_sizeint
Help: The batch size of the memory buffer.
Default:
None
Classes#
- class models.ccic.Ccic(backbone, loss, args, transform, dataset=None)[source]#
Bases:
ContinualModel
Continual Semi-Supervised Learning via Continual Contrastive Interpolation Consistency.
- get_debug_iters()[source]#
Returns the number of iterations to wait before logging. - CCIC needs a couple more iterations to initialize the KNN.