CCIC#
Arguments#
Options
- --alphafloat
- Help: Unsupervised loss weight. - Default: - 0.5
 
- --knn_kint
- Help: k of kNN. - Default: - 2
 
- --memory_penaltyfloat
- Help: Unsupervised penalty weight. - Default: - 1.0
 
- --k_augint
- Help: Number of augumentation to compute label predictions. - Default: - 3
 
- --mixmatch_alphafloat
- Help: Regularization weight. - Default: - 0.5
 
- --sharp_tempfloat
- Help: Temperature for sharpening. - Default: - 0.5
 
- --mixup_alphafloat
- Help: None - Default: - 0.75
 
Rehearsal arguments
Arguments shared by all rehearsal-based methods.
- --buffer_sizeint
- Help: The size of the memory buffer. - Default: - None
 
- --minibatch_sizeint
- Help: The batch size of the memory buffer. - Default: - None
 
Classes#
- class models.ccic.Ccic(backbone, loss, args, transform, dataset=None)[source]#
- Bases: - ContinualModel- Continual Semi-Supervised Learning via Continual Contrastive Interpolation Consistency. - get_debug_iters()[source]#
- Returns the number of iterations to wait before logging. - CCIC needs a couple more iterations to initialize the KNN.