LAYERS# Classes# class backbone.utils.layers.ClipLinear(in_features, out_features, lora_dropout=0.0, fan_in_fan_out=False, **kwargs)[source]# Bases: Linear, LoRALayer forward(x, AB=None)[source]# reset_parameters()[source]# class backbone.utils.layers.IncrementalClassifier(embed_dim, nb_classes)[source]# Bases: Module forward(x)[source]# Forward pass. Compute the logits for each head and concatenate them. Parameters: x (Tensor) – torch.Tensor, input features. update(nb_classes, freeze_old=True)[source]# Add a new head to the classifier. Parameters: nb_classes (int) – add. (number of classes to) – freeze_old – bool, whether to freeze the old heads.