LWF MC# Arguments# Options --wd_regfloatHelp: L2 regularization applied to the parameters. Default: 0.0 Classes# class models.lwf_mc.LwFMC(backbone, loss, args, transform, dataset=None)[source]# Bases: ContinualModel Learning without Forgetting - Multi-Class. COMPATIBILITY: List[str] = ['class-il', 'task-il']# NAME: str = 'lwf_mc'# end_task(dataset)[source]# get_loss(inputs, labels, task_idx, logits)[source]# Computes the loss tensor. Parameters: inputs (Tensor) – the images to be fed to the network labels (Tensor) – the ground-truth labels task_idx (int) – the task index Returns: the differentiable loss value Return type: Tensor static get_parser(parser)[source]# Return type: ArgumentParser observe(inputs, labels, not_aug_inputs, logits=None, epoch=None)[source]#