SEQ CUB200#
Classes#
- class datasets.seq_cub200.CUB200(root, train=True, transform=None, target_transform=None, download=False)[source]#
Bases:
MyCUB200
Base CUB200 dataset.
- class datasets.seq_cub200.MyCUB200(root, train=True, transform=None, target_transform=None, download=True)[source]#
Bases:
Dataset
Overrides dataset to change the getitem function.
- IMG_SIZE = 224#
- N_CLASSES = 200#
- class datasets.seq_cub200.SequentialCUB200(args)[source]#
Bases:
ContinualDataset
Sequential CUB200 Dataset.
- Parameters:
NAME (str) – name of the dataset.
SETTING (str) – setting of the dataset.
N_CLASSES_PER_TASK (int) – number of classes per task.
N_TASKS (int) – number of tasks.
SIZE (tuple) – size of the images.
MEAN (tuple) – mean of the dataset.
STD (tuple) – standard deviation of the dataset.
TRANSFORM (torchvision.transforms) – transformation to apply to the data.
TEST_TRANSFORM (torchvision.transforms) – transformation to apply to the test data.
- MEAN = [0.485, 0.456, 0.406]#
- STD = [0.229, 0.224, 0.225]#
- TEST_TRANSFORM = Compose( Resize(size=256, interpolation=bicubic, max_size=None, antialias=True) CenterCrop(size=(224, 224)) ToTensor() Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )#
- TRANSFORM = Compose( Resize(size=(300, 300), interpolation=bicubic, max_size=None, antialias=True) RandomCrop(size=(224, 224), padding=None) RandomHorizontalFlip(p=0.5) ToTensor() Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )#