SEQ CIFAR100 224 RS#
Classes#
- class datasets.seq_cifar100_224_rs.SequentialCIFAR100224RS(args)[source]#
- Bases: - ContinualDataset- The Sequential CIFAR100 dataset with 224x224 resolution with ResNet50 backbone. - Parameters:
- NAME (str) – name of the dataset. 
- SETTING (str) – setting of the dataset. 
- N_CLASSES_PER_TASK (int) – number of classes per task. 
- N_TASKS (int) – number of tasks. 
- N_CLASSES (int) – number of classes. 
- SIZE (tuple) – size of the images. 
- MEAN (tuple) – mean of the dataset. 
- STD (tuple) – standard deviation of the dataset. 
- TRANSFORM (torchvision.transforms) – transformation to apply to the data. 
- TEST_TRANSFORM (torchvision.transforms) – transformation to apply to the test data. 
 
 - MEAN = (0.5071, 0.4867, 0.4408)#
 - STD = (0.2675, 0.2565, 0.2761)#
 - TEST_TRANSFORM = Compose( Resize(size=224, interpolation=bilinear, max_size=None, antialias=True) ToTensor() Normalize(mean=(0.5071, 0.4867, 0.4408), std=(0.2675, 0.2565, 0.2761)) )#
 - TRANSFORM = Compose( Resize(size=224, interpolation=bilinear, max_size=None, antialias=True) RandomCrop(size=(224, 224), padding=28) RandomHorizontalFlip(p=0.5) ToTensor() Normalize(mean=(0.5071, 0.4867, 0.4408), std=(0.2675, 0.2565, 0.2761)) )#