SEQ CIFAR100 224 RS#
Classes#
- class datasets.seq_cifar100_224_rs.SequentialCIFAR100224RS(args)[source]#
Bases:
ContinualDataset
The Sequential CIFAR100 dataset with 224x224 resolution with ResNet50 backbone.
- Parameters:
NAME (str) – name of the dataset.
SETTING (str) – setting of the dataset.
N_CLASSES_PER_TASK (int) – number of classes per task.
N_TASKS (int) – number of tasks.
N_CLASSES (int) – number of classes.
SIZE (tuple) – size of the images.
MEAN (tuple) – mean of the dataset.
STD (tuple) – standard deviation of the dataset.
TRANSFORM (torchvision.transforms) – transformation to apply to the data.
TEST_TRANSFORM (torchvision.transforms) – transformation to apply to the test data.
- MEAN = (0.5071, 0.4867, 0.4408)#
- STD = (0.2675, 0.2565, 0.2761)#
- TEST_TRANSFORM = Compose( Resize(size=224, interpolation=bilinear, max_size=None, antialias=True) ToTensor() Normalize(mean=(0.5071, 0.4867, 0.4408), std=(0.2675, 0.2565, 0.2761)) )#
- TRANSFORM = Compose( Resize(size=224, interpolation=bilinear, max_size=None, antialias=True) RandomCrop(size=(224, 224), padding=28) RandomHorizontalFlip(p=0.5) ToTensor() Normalize(mean=(0.5071, 0.4867, 0.4408), std=(0.2675, 0.2565, 0.2761)) )#