SEQ IMAGENET R#

Classes#

class datasets.seq_imagenet_r.MyImagenetR(root, train=True, transform=None, target_transform=None, download=False)[source]#

Bases: Dataset

N_CLASSES = 200#

Overrides the CIFAR100 dataset to change the getitem function.

class datasets.seq_imagenet_r.SequentialImagenetR(args)[source]#

Bases: ContinualDataset

MEAN = (0.0, 0.0, 0.0)#
NAME: str = 'seq-imagenet-r'#
N_CLASSES: int = 200#
N_CLASSES_PER_TASK: int = 20#
N_TASKS: int = 10#
SETTING: str = 'class-il'#
SIZE: Tuple[int] = (224, 224)#
STD = (1.0, 1.0, 1.0)#
TEST_TRANSFORM = Compose(     Resize(size=(256, 256), interpolation=bicubic, max_size=None, antialias=True)     CenterCrop(size=(224, 224))     ToTensor()     Normalize(mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0)) )#
TRANSFORM = Compose(     RandomResizedCrop(size=(224, 224), scale=(0.08, 1.0), ratio=(0.75, 1.3333), interpolation=bicubic, antialias=True)     RandomHorizontalFlip(p=0.5)     ToTensor()     Normalize(mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0)) )#
get_backbone()[source]#
get_batch_size()[source]#
get_class_names()[source]#
get_data_loaders()[source]#
static get_denormalization_transform()[source]#
get_epochs()[source]#
static get_loss()[source]#
static get_normalization_transform()[source]#
static get_transform()[source]#