SEQ CHESTX#

Classes#

class datasets.seq_chestx.ChestX(root, train=True, transform=None, target_transform=None, download=False)[source]#

Bases: Dataset

LABELS = ['Cardiomegaly', 'Consolidation', 'Edema', 'Fibrosis', 'Pleural Thickening', 'Pneumothorax']#

Overrides the ChestX dataset to change the getitem function.

N_CLASSES = 6#

To reduce the effect of the severe imbalance in the dataset, we drop the two classes with the smallest and largest amount of samples.

class datasets.seq_chestx.SequentialChestX(args)[source]#

Bases: ContinualDataset

MEAN = [0.485, 0.456, 0.406]#
NAME: str = 'seq-chestx'#
N_CLASSES: int = 6#
N_CLASSES_PER_TASK: int = 3#
N_TASKS: int = 2#
SETTING: str = 'class-il'#
SIZE: Tuple[int] = (224, 224)#
STD = [0.229, 0.224, 0.225]#
TEST_TRANSFORM = Compose(     Resize(size=(224, 224), interpolation=bicubic, max_size=None, antialias=True)     ToTensor()     Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )#
TRANSFORM = Compose(     Resize(size=(224, 224), interpolation=bicubic, max_size=None, antialias=True)     ToTensor()     Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )#
get_backbone()[source]#
get_batch_size()[source]#
get_class_names()[source]#
get_data_loaders()[source]#
static get_denormalization_transform()[source]#
get_epochs()[source]#
static get_loss()[source]#
static get_normalization_transform()[source]#
static get_prompt_templates()[source]#
static get_transform()[source]#
normalize = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])#