SEQ TINYIMAGENET R#
Classes#
- class datasets.seq_tinyimagenet_r.SequentialTinyImagenet32R(args)[source]#
Bases:
SequentialTinyImagenet
The Sequential TinyImagenet dataset resized to 32x32.
- Parameters:
- MEAN = [0.4807, 0.4485, 0.398]#
- STD = [0.2541, 0.2456, 0.2604]#
- TEST_TRANSFORM = Compose( Resize(size=32, interpolation=bilinear, max_size=None, antialias=True) ToTensor() Normalize(mean=[0.4807, 0.4485, 0.398], std=[0.2541, 0.2456, 0.2604]) )#
- TRANSFORM = Compose( Resize(size=32, interpolation=bilinear, max_size=None, antialias=True) RandomCrop(size=(32, 32), padding=4) RandomHorizontalFlip(p=0.5) ToTensor() Normalize(mean=[0.4807, 0.4485, 0.398], std=[0.2541, 0.2456, 0.2604]) )#