SECOND ORDER#
Arguments#
Options
- --virtual_bs_nint
Help: Virtual batch size iterations
Default:
1
- --clip_gradnone_or_float
Help: Clip gradient norm (None means no clipping)
Default:
100
- --tuning_stylestr
Help: Strategy to use for tuning the model.
“lora”: LoRA
“full”: full fine-tuning
“ia3”: IA3
Default:
lora
Choices:
lora, full, ia3
- --lora_rint
Help: LoRA rank. Used if tuning_style is “lora”.
Default:
16
- --num_epochs_pretuningint
Help: Number of epochs for pre-tuning
Default:
3
- --learning_rate_pretuningfloat
Help: Learning rate for pre-tuning.
Default:
0.01
- --fisher_mc_classesint_or_all
Help: Number of classes to use for EWC Fisher computation.
“all”: slow but accurate, uses all classes
<int>: use subset of <int> classes, faster but less accurate
Default:
all
- --num_samples_align_pretuningint
Help: Num. of samples from each gaussian.
Default:
256
- --batch_size_align_pretuningint
Help: Batch size for CA.
Default:
128
- --num_epochs_align_pretuningint
Help: Num. of epochs for CA.
Default:
10
- --lr_align_pretuningfloat
Help: Learning rate for CA.
Default:
0.01
- --use_iel0|1|True|False -> bool
Help: Tune with ITA or IEL
Default:
0
Choices:
0, 1
- --beta_ielfloat
Help: Beta parameter of IEL (Eq. 18/19)
Default:
0.0
- --alpha_itafloat
Help: Alpha parameter of ITA (Eq. 11)
Default:
0.0
- --req_weight_clsfloat
Help: Regularization weight (alpha for ITA/beta for IEL) for classifier. If None, will use the alpha/beta of ITA/IEL.
Default:
None
- --simple_reg_weight_clsfloat
Help: Regularization weight for simple MSE-based loss for the classifier.
Default:
0.0
Classes#
- class models.second_order.SecondOrder(backbone, loss, args, transform, dataset=None)[source]#
Bases:
ContinualModel