MNIST 360#
Classes#
- class datasets.mnist_360.MNIST360(args, is_train=False)[source]#
 Bases:
DatasetA custom dataset class for MNIST360 that provides training and testing data with incremental rotation for each class.
- Parameters:
 
- N_CLASSES = 9#
 
- get_test_data()[source]#
 Ensembles the next examples of the current class in a batch.
- Returns:
 The batch of examples. Tensor: The labels of the examples.
- Return type:
 Tensor
- class datasets.mnist_360.SequentialMNIST360(args)[source]#
 Bases:
GCLDatasetA dataset class for the MNIST-360 dataset in the context of general-continual learning.
- TRANSFORM#
 The transformation to apply to the data.
- Type:
 torch.nn.Module
- args#
 An object containing the arguments for the dataset.
- Type:
 Namespace
- TRANSFORM = Identity()#
 
- get_data_loaders()[source]#
 Get the data loaders for the MNIST360 dataset, add them to the current object and return them.
- Returns:
 DataLoader for the training dataset.
test_loader (torch.utils.data.DataLoader): DataLoader for the test dataset.
- Return type:
 train_loader (torch.utils.data.DataLoader)