MNIST 360#
Classes#
- class datasets.mnist_360.MNIST360(args, is_train=False)[source]#
Bases:
Dataset
A custom dataset class for MNIST360 that provides training and testing data with incremental rotation for each class.
- Parameters:
- N_CLASSES = 9#
- get_test_data()[source]#
Ensembles the next examples of the current class in a batch.
- Returns:
The batch of examples. Tensor: The labels of the examples.
- Return type:
Tensor
- class datasets.mnist_360.SequentialMNIST360(args)[source]#
Bases:
GCLDataset
A dataset class for the MNIST-360 dataset in the context of general-continual learning.
- TRANSFORM#
The transformation to apply to the data.
- Type:
- args#
An object containing the arguments for the dataset.
- Type:
Namespace
- TRANSFORM = Identity()#
- get_data_loaders()[source]#
Get the data loaders for the MNIST360 dataset, add them to the current object and return them.
- Returns:
DataLoader for the training dataset.
test_loader (torch.utils.data.DataLoader): DataLoader for the test dataset.
- Return type:
train_loader (torch.utils.data.DataLoader)