MNIST 360#
Classes#
- class datasets.mnist_360.MNIST360(args, is_train=False)[source]#
- Bases: - Dataset- A custom dataset class for MNIST360 that provides training and testing data with incremental rotation for each class. - Parameters:
 - N_CLASSES = 9#
 - get_test_data()[source]#
- Ensembles the next examples of the current class in a batch. - Returns:
- The batch of examples. Tensor: The labels of the examples. 
- Return type:
- Tensor 
 
 
- class datasets.mnist_360.SequentialMNIST360(args)[source]#
- Bases: - GCLDataset- A dataset class for the MNIST-360 dataset in the context of general-continual learning. - TRANSFORM#
- The transformation to apply to the data. - Type:
- torch.nn.Module 
 
 - args#
- An object containing the arguments for the dataset. - Type:
- Namespace 
 
 - TRANSFORM = Identity()#
 - get_data_loaders()[source]#
- Get the data loaders for the MNIST360 dataset, add them to the current object and return them. - Returns:
- DataLoader for the training dataset. - test_loader (torch.utils.data.DataLoader): DataLoader for the test dataset. 
- Return type:
- train_loader (torch.utils.data.DataLoader)