STARPROMPT#
Arguments#
Options
- --clip_backbonestr
Help: CLIP backbone architecture
Default:
ViT-L/14
Choices:
RN50, RN101, RN50x4, RN50x16, RN50x64, ViT-B/32, ViT-B/16, ViT-L/14, ViT-L/14@336px
Frozen hyperparameters
- --virtual_bs_nint
Help: virtual batch size iterations
Default:
1
- --ortho_split_valint
Help: None
Default:
0
- --gr_mog_n_iters_second_stageint
Help: Number of EM iterations during fit for GR with MOG on the second stage.
Default:
500
- --gr_mog_n_iters_first_stageint
Help: Number of EM iterations during fit for GR with MOG on the first stage.
Default:
200
- --gr_mog_n_componentsint
Help: Number of components for GR with MOG (both first and second stage).
Default:
5
- --batch_size_grint
Help: Batch size for Generative Replay (both first and second stage).
Default:
128
- --num_samples_grint
Help: Number of samples for Generative Replay (both first and second stage).
Default:
256
- --prefix_tuning_prompt_lenint
Help: Prompt length for prefix tuning. Used only if –prompt_mode==concat.
Default:
5
Ablations hyperparameters
- --gr_modelstr
Help: Type of distribution model for Generative Replay (both first and second stage). - mog: Mixture of Gaussian. - gaussian: Single Gaussian distribution.
Default:
mog
Choices:
mog, gaussian
- --enable_gr0|1|True|False -> bool
Help: Enable Generative Replay (both first and second stage).
Default:
1
- --prompt_modestr
Help: Prompt type for the second stage. - residual: STAR-Prompt style prompting. - concat: Prefix-Tuning style prompting.
Default:
residual
Choices:
residual, concat
- --enable_confidence_modulation0|1|True|False -> bool
Help: Enable confidence modulation with CLIP similarities (Eq. 5 of the main paper)?
Default:
1
Tunable hyperparameters
- --lambda_ortho_second_stagefloat
Help: orthogonality loss coefficient
Default:
10
- --num_monte_carlo_gr_second_stageint
Help: how many times to sample from the dataset for alignment
Default:
1
- --num_epochs_gr_second_stageint
Help: Num. of epochs for GR.
Default:
10
- --learning_rate_gr_second_stagefloat
Help: Learning rate for GR.
Default:
0.001
- --num_monte_carlo_gr_first_stageint
Help: how many times to sample from the dataset for alignment
Default:
1
- --learning_rate_gr_first_stagefloat
Help: Learning rate for Generative Replay.
Default:
0.05
- --lambda_ortho_first_stagefloat
Help: Orthogonality loss coefficient for coop
Default:
30
- --num_epochs_gr_first_stageint
Help: Num. of epochs for Generative Replay.
Default:
10
First stage optimization hyperparameters
- --first_stage_optimstr
Help: First stage optimizer
Default:
sgd
Choices:
sgd, adam
- --first_stage_lrfloat
Help: First stage learning rate
Default:
0.002
- --first_stage_momentumfloat
Help: First stage momentum
Default:
0
- --first_stage_weight_decayfloat
Help: First stage weight decay
Default:
0
- --first_stage_epochsint
Help: First stage epochs. If not set, it will be the same as n_epochs.
Default:
None