DERPP LIDER#
Arguments#
Options
- --alpha_lip_lambdafloat
Help: Lambda parameter for lipschitz minimization loss on buffer samples
Default:
0
- --beta_lip_lambdafloat
Help: Lambda parameter for lipschitz budget distribution loss
Default:
0
- --headless_init_actstr
Help: None
Default:
relu
Choices:
relu, lrelu
- --grad_iter_stepint
Help: Step from which to enable gradient computation.
Default:
-2
- --alphafloat
Help: Penalty weight.
Default:
None
- --betafloat
Help: Penalty weight.
Default:
None
Rehearsal arguments
Arguments shared by all rehearsal-based methods.
- --buffer_sizeint
Help: The size of the memory buffer.
Default:
None
- --minibatch_sizeint
Help: The batch size of the memory buffer.
Default:
None
Classes#
- class models.derpp_lider.DerppLider(backbone, loss, args, transform, dataset=None)[source]#
Bases:
LiderOptimizer
Continual learning via Dark Experience Replay++. Treated with LiDER!