SEQ MIT67#

Classes#

class datasets.seq_mit67.MyMIT67(root, train=True, download=True, transform=None, target_transform=None)[source]#

Bases: Dataset

NUM_CLASSES = 67#
class datasets.seq_mit67.SequentialMIT67(args)[source]#

Bases: ContinualDataset

MEAN = [0.485, 0.456, 0.406]#
NAME: str = 'seq-mit67'#
N_CLASSES: int = 67#
N_CLASSES_PER_TASK: int = [7, 7, 7, 7, 7, 7, 7, 6, 6, 6]#
N_TASKS: int = 10#
SETTING: str = 'class-il'#
SIZE: Tuple[int] = (224, 224)#
STD = [0.229, 0.224, 0.225]#
TEST_TRANSFORM = Compose(     Resize(size=256, interpolation=bilinear, max_size=None, antialias=True)     CenterCrop(size=(224, 224))     ToTensor()     Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )#
TRANSFORM = Compose(     Resize(size=256, interpolation=bicubic, max_size=None, antialias=True)     RandomCrop(size=(224, 224), padding=None)     RandomHorizontalFlip(p=0.5)     ToTensor()     Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )#
get_backbone()[source]#
get_batch_size()[source]#
get_class_names()[source]#
get_data_loaders()[source]#
static get_denormalization_transform()[source]#
get_epochs()[source]#
static get_loss()[source]#
static get_normalization_transform()[source]#
static get_prompt_templates()[source]#
static get_transform()[source]#