SLCA#

Arguments#

Options

--prefixstr

Help: None

  • Default: reproduce

--memory_sizeint

Help: None

  • Default: 0

--memory_per_classint

Help: None

  • Default: 0

--fixed_memory0|1|True|False -> bool

Help: None

  • Default: 0

--feature_extractor_typestr

Help: the type of feature extractor to use. vit-b-p16 is the default: ViT-B/16 pretrained on Imagenet 21k (NO finetuning on ImageNet 1k)

  • Default: vit-b-p16

--ca_epochsint

Help: number of epochs for classifier alignment

  • Default: 5

--ca_with_logit_normfloat

Help: None

  • Default: 0.1

--milestonesstr

Help: None

  • Default: 40

--lr_decayfloat

Help: None

  • Default: 0.1

--virtual_bs_iterationsint

Help: virtual batch size iterations

  • Default: 1

Slow Learner with Classifier Alignment.

Note

SLCA USES A CUSTOM BACKBONE (see feature_extractor_type argument)

param –feature_extractor_type:

the type of convnet to use. vit-b-p16 is the default: ViT-B/16 pretrained on Imagenet 21k (NO finetuning on ImageNet 1k)

Classes#

class models.slca.SLCA(backbone, loss, args, transform, dataset=None)[source]#

Bases: ContinualModel

Continual Learning via Slow Learner with Classifier Alignment.

COMPATIBILITY: List[str] = ['class-il', 'domain-il', 'task-il']#
NAME: str = 'slca'#
begin_task(dataset)[source]#
end_task(dataset)[source]#
forward(x)[source]#
get_parameters()[source]#
static get_parser(parser)[source]#
Return type:

ArgumentParser

observe(inputs, labels, not_aug_inputs, epoch=0)[source]#