SEQ EUROSAT RGB#

Classes#

class datasets.seq_eurosat_rgb.MyEuroSat(root, split='train', transform=None, target_transform=None)[source]#

Bases: Dataset

static get_class_names()[source]#
class datasets.seq_eurosat_rgb.SequentialEuroSatRgb(args)[source]#

Bases: ContinualDataset

MEAN = [0.48145466, 0.4578275, 0.40821073]#
NAME: str = 'seq-eurosat-rgb'#
N_CLASSES: int = 10#
N_CLASSES_PER_TASK: int = 2#
N_TASKS: int = 5#
SETTING: str = 'class-il'#
SIZE: Tuple[int] = (224, 224)#
STD = [0.26862954, 0.26130258, 0.27577711]#
TEST_TRANSFORM = Compose(     Resize(size=224, interpolation=bicubic, max_size=None, antialias=True)     CenterCrop(size=(224, 224))     ToTensor()     Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]) )#
TRANSFORM = Compose(     RandomResizedCrop(size=(224, 224), scale=(0.08, 1.0), ratio=(0.75, 1.3333), interpolation=bicubic, antialias=True)     RandomHorizontalFlip(p=0.5)     ToTensor()     Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]) )#
get_backbone()[source]#
get_batch_size()[source]#
get_class_names()[source]#
get_data_loaders()[source]#
static get_denormalization_transform()[source]#
get_epochs()[source]#
static get_loss()[source]#
static get_normalization_transform()[source]#
static get_prompt_templates()[source]#
static get_transform()[source]#

Functions#

datasets.seq_eurosat_rgb.my_collate_fn(batch)[source]#