XDER RPC CSCCT#

Arguments#

Options

--alphafloat

Help: Penalty weight.

  • Default: None

--betafloat

Help: Penalty weight.

  • Default: None

--gammafloat

Help: None

  • Default: 0.85

--etafloat

Help: None

  • Default: 0.1

--mfloat

Help: None

  • Default: 0.3

--clip_gradnone_or_float

Help: Clip gradient norm (default: None, no clipping)

  • Default: None

--align_bn0|1|True|False -> bool

Help: Use BatchNorm alignment

  • Default: 0

--n_rpc_headsint

Help: N Heads for RPC

  • Default: None

--csc_weightfloat

Help: Weight of CSC loss.

  • Default: 3

--ct_weightfloat

Help: Weight of CT loss.

  • Default: 1.5

--ct_temperaturefloat

Help: Temperature of CT loss.

  • Default: 2

Rehearsal arguments

Arguments shared by all rehearsal-based methods.

--buffer_sizeint

Help: The size of the memory buffer.

  • Default: None

--minibatch_sizeint

Help: The batch size of the memory buffer.

  • Default: None

Classes#

class models.xder_rpc_cscct.XDerRPCCscCt(backbone, loss, args, transform, dataset=None)[source]#

Bases: CscCtModel

Continual learning via eXtended Dark Experience Replay with RPC. Treated with CSCCT!

COMPATIBILITY: List[str] = ['class-il', 'task-il']#
NAME: str = 'xder_rpc_cscct'#
end_task(dataset)[source]#
forward(x)[source]#
static get_parser(parser)[source]#
Return type:

ArgumentParser

observe(inputs, labels, not_aug_inputs, epoch=None)[source]#
update_logits(old, new, gt, task_start, n_tasks=1)[source]#

Functions#

models.xder_rpc_cscct.dsimplex(num_classes=10)[source]#