SEQ ISIC#

Classes#

class datasets.seq_isic.Isic(root, train=True, transform=None, target_transform=None, download=False)[source]#

Bases: Dataset

LABELS = ['melanoma', 'basal cell carcinoma', 'actinic keratosis or intraepithelial carcinoma', 'benign keratosis', 'dermatofibroma', 'vascular skin lesion']#

Overrides the ChestX dataset to change the getitem function.

N_CLASSES = 6#
class datasets.seq_isic.SequentialIsic(args)[source]#

Bases: ContinualDataset

MEAN = [0.485, 0.456, 0.406]#
NAME: str = 'seq-isic'#
N_CLASSES: int = 6#
N_CLASSES_PER_TASK: int = 2#
N_TASKS: int = 3#
SETTING: str = 'class-il'#
SIZE: Tuple[int] = (224, 224)#
STD = [0.229, 0.224, 0.225]#
TEST_TRANSFORM = Compose(     Resize(size=(256, 256), interpolation=bicubic, max_size=None, antialias=True)     CenterCrop(size=(224, 224))     ToTensor()     Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )#
TRANSFORM = Compose(     Resize(size=256, interpolation=bicubic, max_size=None, antialias=True)     RandomCrop(size=(224, 224), padding=None)     RandomHorizontalFlip(p=0.5)     ToTensor()     Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )#
get_backbone()[source]#
get_batch_size()[source]#
get_class_names()[source]#
get_data_loaders()[source]#
static get_denormalization_transform()[source]#
get_epochs()[source]#
static get_loss()[source]#
static get_normalization_transform()[source]#
static get_prompt_templates()[source]#
static get_transform()[source]#