Source code for models.lwf_mc

# Copyright 2020-present, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from copy import deepcopy
import torch
import torch.nn.functional as F
from datasets import get_dataset
from utils.args import *
from models.utils.continual_model import ContinualModel


[docs] class LwFMC(ContinualModel): """Learning without Forgetting - Multi-Class.""" NAME = 'lwf_mc' COMPATIBILITY = ['class-il', 'task-il']
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: parser.add_argument('--wd_reg', type=float, default=0.0, help='L2 regularization applied to the parameters.') return parser
def __init__(self, backbone, loss, args, transform, dataset=None): super(LwFMC, self).__init__(backbone, loss, args, transform, dataset=dataset) self.dataset = get_dataset(args) # Instantiate buffers self.eye = torch.eye(self.dataset.N_CLASSES_PER_TASK * self.dataset.N_TASKS).to(self.device) self.class_means = None self.old_net = None
[docs] def observe(self, inputs, labels, not_aug_inputs, logits=None, epoch=None): if self.current_task > 0: with torch.no_grad(): logits = torch.sigmoid(self.old_net(inputs)) self.opt.zero_grad() loss = self.get_loss(inputs, labels, self.current_task, logits) loss.backward() self.opt.step() return loss.item()
[docs] def get_loss(self, inputs: torch.Tensor, labels: torch.Tensor, task_idx: int, logits: torch.Tensor) -> torch.Tensor: """ Computes the loss tensor. Args: inputs: the images to be fed to the network labels: the ground-truth labels task_idx: the task index Returns: the differentiable loss value """ pc = task_idx * self.dataset.N_CLASSES_PER_TASK ac = (task_idx + 1) * self.dataset.N_CLASSES_PER_TASK outputs = self.net(inputs)[:, :ac] if task_idx == 0: # Compute loss on the current task targets = self.eye[labels][:, :ac] loss = F.binary_cross_entropy_with_logits(outputs, targets) assert loss >= 0 else: targets = self.eye[labels][:, pc:ac] comb_targets = torch.cat((logits[:, :pc], targets), dim=1) loss = F.binary_cross_entropy_with_logits(outputs, comb_targets) assert loss >= 0 if self.args.wd_reg: loss += self.args.wd_reg * torch.sum(self.net.get_params() ** 2) return loss
[docs] def end_task(self, dataset) -> None: self.old_net = deepcopy(self.net.eval()) self.net.train()