Source code for models.gdumb_lider

from argparse import ArgumentParser
import torch

from backbone import get_backbone
from utils.args import add_rehearsal_args
from torch.optim import SGD, lr_scheduler
from utils.buffer import Buffer
from models.utils.lider_model import LiderOptimizer, add_lipschitz_args
from utils.augmentations import cutmix_data
from utils.status import progress_bar


[docs] def fit_buffer(self: LiderOptimizer, epochs): optimizer = SGD(self.get_parameters(), lr=self.args.maxlr, momentum=self.args.optim_mom, weight_decay=self.args.optim_wd, nesterov=self.args.optim_nesterov) scheduler = lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=1, T_mult=2, eta_min=self.args.minlr) for epoch in range(epochs): if epoch <= 0: # Warm start of 1 epoch for param_group in optimizer.param_groups: param_group['lr'] = self.args.maxlr * 0.1 elif epoch == 1: # Then set to maxlr for param_group in optimizer.param_groups: param_group['lr'] = self.args.maxlr else: scheduler.step() all_inputs, all_labels = self.buffer.get_data( len(self.buffer.examples), transform=self.transform, device=self.device) it = 0 while len(all_inputs): if it > self.get_debug_iters() and self.args.debug_mode: break it += 1 optimizer.zero_grad() buf_inputs, buf_labels = all_inputs[:self.args.batch_size], all_labels[:self.args.batch_size] all_inputs, all_labels = all_inputs[self.args.batch_size:], all_labels[self.args.batch_size:] if self.args.cutmix_alpha is not None: inputs, labels_a, labels_b, lam = cutmix_data(x=buf_inputs.cpu(), y=buf_labels.cpu(), alpha=self.args.cutmix_alpha) buf_inputs = inputs.to(self.device) buf_labels_a = labels_a.to(self.device) buf_labels_b = labels_b.to(self.device) buf_outputs = self.net(buf_inputs) loss = lam * self.loss(buf_outputs, buf_labels_a) + (1 - lam) * self.loss(buf_outputs, buf_labels_b) else: buf_outputs = self.net(buf_inputs) loss = self.loss(buf_outputs, buf_labels) if not self.buffer.is_empty(): if self.args.alpha_lip_lambda > 0: buf_inputs, _ = self.buffer.get_data(self.args.minibatch_size, transform=self.transform, device=self.device) _, buf_output_features = self.net(buf_inputs, returnt='full') lip_inputs = [buf_inputs] + buf_output_features loss_lip_buffer = self.minimization_lip_loss(lip_inputs) loss += self.args.alpha_lip_lambda * loss_lip_buffer if self.args.beta_lip_lambda > 0: buf_inputs, _ = self.buffer.get_data(self.args.minibatch_size, transform=self.transform, device=self.device) _, buf_output_features = self.net(buf_inputs, returnt='full') lip_inputs = [buf_inputs] + buf_output_features loss_lip_budget = self.dynamic_budget_lip_loss(lip_inputs) loss += self.args.beta_lip_lambda * loss_lip_budget loss.backward() optimizer.step() progress_bar(epoch, epochs, 1, 'G', loss.item())
[docs] class GDumbLider(LiderOptimizer): """GDumb learns an empty model only on the buffer. Treated with LiDER!""" NAME = 'gdumb_lider' COMPATIBILITY = ['class-il', 'task-il']
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: add_rehearsal_args(parser) add_lipschitz_args(parser) parser.add_argument('--maxlr', type=float, default=5e-2, help='Max learning rate.') parser.add_argument('--minlr', type=float, default=5e-4, help='Min learning rate.') parser.add_argument('--fitting_epochs', type=int, default=256, help='Number of epochs to fit the buffer.') parser.add_argument('--cutmix_alpha', type=float, default=1.0, help='Alpha parameter for cutmix') return parser
def __init__(self, backbone, loss, args, transform, dataset=None): super().__init__(backbone, loss, args, transform, dataset=dataset) self.buffer = Buffer(self.args.buffer_size)
[docs] def observe(self, inputs: torch.Tensor, labels: torch.Tensor, not_aug_inputs: torch.Tensor, epoch=None): self.buffer.add_data(examples=not_aug_inputs, labels=labels) return 0
[docs] def end_task(self, dataset): # new model if not (self.current_task == dataset.N_TASKS - 1): return self.net = get_backbone(self.args).to(self.device) self.net.set_return_prerelu(True) self.init_net(dataset) fit_buffer(self, self.args.fitting_epochs)