Source code for models.derpp_lider

from utils.buffer import Buffer
from torch.nn import functional as F
from utils.args import *
import torch
from models.utils.lider_model import LiderOptimizer, add_lipschitz_args


[docs] class DerppLider(LiderOptimizer): """Continual learning via Dark Experience Replay++. Treated with LiDER!""" NAME = 'derpp_lider' COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual']
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: add_rehearsal_args(parser) add_lipschitz_args(parser) parser.add_argument('--alpha', type=float, required=True, help='Penalty weight.') parser.add_argument('--beta', type=float, required=True, help='Penalty weight.') return parser
def __init__(self, backbone, loss, args, transform, dataset=None): super().__init__(backbone, loss, args, transform, dataset=dataset) self.buffer = Buffer(self.args.buffer_size)
[docs] def begin_task(self, dataset): if self.current_task == 0: self.net.set_return_prerelu(True) self.init_net(dataset)
[docs] def observe(self, inputs: torch.Tensor, labels: torch.Tensor, not_aug_inputs: torch.Tensor, epoch=None): self.opt.zero_grad() outputs = self.net(inputs) loss = self.loss(outputs, labels) tot_loss = loss.item() loss.backward() if not self.buffer.is_empty(): buf_inputs, _, buf_logits = self.buffer.get_data( self.args.minibatch_size, transform=self.transform, device=self.device) buf_outputs, buf_output_features = self.net(buf_inputs, returnt='full') loss_mse = self.args.alpha * F.mse_loss(buf_outputs, buf_logits) tot_loss += loss_mse.item() loss_mse.backward() buf_inputs, buf_labels, _ = self.buffer.get_data( self.args.minibatch_size, transform=self.transform, device=self.device) buf_outputs = self.net(buf_inputs).float() loss_ce = self.args.beta * self.loss(buf_outputs, buf_labels) tot_loss += loss_ce.item() loss_ce.backward() if self.args.alpha_lip_lambda > 0: buf_inputs, _, _ = self.buffer.get_data(self.args.minibatch_size, transform=self.transform, device=self.device) _, buf_output_features = self.net(buf_inputs, returnt='full') lip_inputs = [buf_inputs] + buf_output_features loss_lip_minimize = self.args.alpha_lip_lambda * self.minimization_lip_loss(lip_inputs) tot_loss += loss_lip_minimize.item() loss_lip_minimize.backward() if self.args.beta_lip_lambda > 0: buf_inputs, _, _ = self.buffer.get_data(self.args.minibatch_size, transform=self.transform, device=self.device) _, buf_output_features = self.net(buf_inputs, returnt='full') lip_inputs = [buf_inputs] + buf_output_features loss_lip_dyn_budget = self.args.beta_lip_lambda * self.dynamic_budget_lip_loss(lip_inputs) tot_loss += loss_lip_dyn_budget.item() loss_lip_dyn_budget.backward() self.opt.step() self.buffer.add_data(examples=not_aug_inputs, labels=labels, logits=outputs.data) return tot_loss