Source code for datasets.seq_tinyimagenet_r
# Copyright 2022-present, Lorenzo Bonicelli, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torchvision.transforms as transforms
from datasets.seq_tinyimagenet import SequentialTinyImagenet
from datasets.utils import set_default_from_args
[docs]
class SequentialTinyImagenet32R(SequentialTinyImagenet):
"""The Sequential TinyImagenet dataset resized to 32x32.
Args:
NAME (str): name of the dataset.
SETTING (str): setting of the dataset.
N_CLASSES_PER_TASK (int): number of classes per task.
N_TASKS (int): number of tasks.
N_CLASSES (int): number of classes.
SIZE (tuple): size of the images.
"""
NAME = 'seq-tinyimg-r'
MEAN, STD = [0.4807, 0.4485, 0.3980], [0.2541, 0.2456, 0.2604]
TRANSFORM = transforms.Compose(
[
transforms.Resize(32),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)])
TEST_TRANSFORM = transforms.Compose(
[
transforms.Resize(32),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)])