Source code for datasets.seq_tinyimagenet_r

# Copyright 2022-present, Lorenzo Bonicelli, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torchvision.transforms as transforms
from datasets.seq_tinyimagenet import SequentialTinyImagenet
from datasets.utils import set_default_from_args


[docs] class SequentialTinyImagenet32R(SequentialTinyImagenet): """The Sequential TinyImagenet dataset resized to 32x32. Args: NAME (str): name of the dataset. SETTING (str): setting of the dataset. N_CLASSES_PER_TASK (int): number of classes per task. N_TASKS (int): number of tasks. N_CLASSES (int): number of classes. SIZE (tuple): size of the images. """ NAME = 'seq-tinyimg-r' MEAN, STD = [0.4807, 0.4485, 0.3980], [0.2541, 0.2456, 0.2604] TRANSFORM = transforms.Compose( [ transforms.Resize(32), transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(MEAN, STD)]) TEST_TRANSFORM = transforms.Compose( [ transforms.Resize(32), transforms.ToTensor(), transforms.Normalize(MEAN, STD)])
[docs] @set_default_from_args('n_epochs') def get_epochs(self): return 50
[docs] @set_default_from_args('batch_size') def get_batch_size(self): return 32
[docs] @set_default_from_args("backbone") def get_backbone(): return "resnet18"