import os
import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import Dataset
import numpy as np
import pickle
from PIL import Image
from typing import Tuple
from datasets.utils import set_default_from_args
from utils import smart_joint
from utils.conf import base_path
from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders
from datasets.transforms.denormalization import DeNormalize
from torchvision.transforms.functional import InterpolationMode
from utils.prompt_templates import templates
[docs]
class Isic(Dataset):
N_CLASSES = 6
LABELS = ['melanoma',
'basal cell carcinoma',
'actinic keratosis or intraepithelial carcinoma',
'benign keratosis',
'dermatofibroma',
'vascular skin lesion']
"""
Overrides the ChestX dataset to change the getitem function.
"""
def __init__(self, root, train=True, transform=None,
target_transform=None, download=False) -> None:
self.root = root
self.train = train
self.transform = transform
self.target_transform = target_transform
split = 'train' if train else 'test'
if not os.path.exists(f'{root}/{split}_images.pkl'):
if download:
ln = 'https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/ERM64PkPkFtJhmiUQkVvE64BR900MbIHtJVA_CR4KKhy8A?e=OsrQr5'
from onedrivedownloader import download
download(ln, filename=smart_joint(root, 'isic.tar.gz'), unzip=True, unzip_path=root.rstrip('isic'), clean=True)
else:
raise FileNotFoundError(f'File not found: {root}/{split}_images.pkl')
filename_labels = f'{self.root}/{split}_labels.pkl'
filename_images = f'{self.root}/{split}_images.pkl'
self.not_aug_transform = transforms.Compose([transforms.ToTensor()])
with open(filename_images, 'rb') as f:
self.data = pickle.load(f)
with open(filename_labels, 'rb') as f:
self.targets = pickle.load(f)
def __len__(self):
return len(self.targets)
def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]:
"""
Gets the requested element from the dataset.
:param index: index of the element to be returned
:returns: tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.targets[index]
img = Image.fromarray((img * 255).astype(np.int8), mode='RGB')
original_img = img.copy()
not_aug_img = self.not_aug_transform(original_img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
if not self.train:
return img, target
if hasattr(self, 'logits'):
return img, target, not_aug_img, self.logits[index]
return img, target, not_aug_img
[docs]
class SequentialIsic(ContinualDataset):
NAME = 'seq-isic'
SETTING = 'class-il'
N_TASKS = 3
N_CLASSES_PER_TASK = 2
N_CLASSES = 6
SIZE = (224, 224)
MEAN, STD = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
TRANSFORM = transforms.Compose([
transforms.Resize(256, interpolation=InterpolationMode.BICUBIC),
transforms.RandomCrop(SIZE[0]),
transforms.RandomHorizontalFlip(0.5),
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD),
])
TEST_TRANSFORM = transforms.Compose([
transforms.Resize(size=(256, 256), interpolation=InterpolationMode.BICUBIC),
transforms.CenterCrop(SIZE[0]),
transforms.ToTensor(),
transforms.Normalize(mean=MEAN, std=STD),
])
[docs]
def get_data_loaders(self):
train_dataset = Isic(base_path() + 'isic', train=True,
download=True, transform=self.TRANSFORM)
test_dataset = Isic(base_path() + 'isic', train=False, download=True,
transform=self.TEST_TRANSFORM)
train, test = store_masked_loaders(train_dataset, test_dataset, self)
return train, test
[docs]
def get_class_names(self):
if self.class_names is not None:
return self.class_names
classes = fix_class_names_order(Isic.LABELS, self.args)
self.class_names = classes
return self.class_names
[docs]
@staticmethod
def get_prompt_templates():
return templates['cifar100']
[docs]
@set_default_from_args("backbone")
def get_backbone():
return "vit"
[docs]
@staticmethod
def get_loss():
return F.cross_entropy
[docs]
@set_default_from_args('n_epochs')
def get_epochs(self):
return 30
[docs]
@set_default_from_args('batch_size')
def get_batch_size(self):
return 128