Source code for datasets.seq_imagenet_r

import logging
try:
    import requests
except ImportError as e:
    logging.error("Please install requests using 'pip install requests'")
    raise e

import os
import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import Dataset
import numpy as np
import pickle
from PIL import Image
from typing import Tuple

import yaml

from datasets.utils import set_default_from_args
from utils import smart_joint
from utils.conf import base_path
from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders
from datasets.transforms.denormalization import DeNormalize
from torchvision.transforms.functional import InterpolationMode


[docs] class MyImagenetR(Dataset): N_CLASSES = 200 """ Overrides the CIFAR100 dataset to change the getitem function. """ def __init__(self, root, train=True, transform=None, target_transform=None, download=False) -> None: self.root = root self.train = train self.transform = transform self.target_transform = target_transform self.not_aug_transform = transforms.Compose([transforms.Resize((224, 224), interpolation=InterpolationMode.BICUBIC), transforms.ToTensor()]) if not os.path.exists(self.root): if download: # download from https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar print("Downloading imagenet-r dataset...") url = 'https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar' r = requests.get(url, allow_redirects=True) if not os.path.exists(self.root): os.makedirs(self.root) print("Writing tar on disk...") open(self.root + 'imagenet-r.tar', 'wb').write(r.content) print("Extracting tar...") os.system('tar -xf ' + self.root + 'imagenet-r.tar -C ' + self.root.rstrip('imagenet-r')) # move all files in imagenet-r to root with shutil import shutil print("Moving files...") for d in os.listdir(self.root + 'imagenet-r'): shutil.move(self.root + 'imagenet-r/' + d, self.root) print("Cleaning up...") os.remove(self.root + 'imagenet-r.tar') os.rmdir(self.root + 'imagenet-r') print("Done!") else: raise RuntimeError('Dataset not found.') pwd = os.path.dirname(os.path.abspath(__file__)) if self.train: data_config = yaml.load(open(pwd + '/imagenet_r_utils/imagenet-r_train.yaml'), Loader=yaml.Loader) else: data_config = yaml.load(open(pwd + '/imagenet_r_utils/imagenet-r_test.yaml'), Loader=yaml.Loader) self.data = np.array(data_config['data']) self.targets = np.array(data_config['targets']) def __len__(self): return len(self.targets) def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: """ Gets the requested element from the dataset. :param index: index of the element to be returned :returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] img = Image.open(img).convert('RGB') original_img = img.copy() not_aug_img = self.not_aug_transform(original_img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if not self.train: return img, target if hasattr(self, 'logits'): return img, target, not_aug_img, self.logits[index] return img, target, not_aug_img
[docs] class SequentialImagenetR(ContinualDataset): NAME = 'seq-imagenet-r' SETTING = 'class-il' N_TASKS = 10 N_CLASSES = 200 N_CLASSES_PER_TASK = N_CLASSES // N_TASKS MEAN, STD = (0.0, 0.0, 0.0), (1.0, 1.0, 1.0) SIZE = (224, 224) TRANSFORM = transforms.Compose([ transforms.RandomResizedCrop(SIZE[0], interpolation=InterpolationMode.BICUBIC), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD), ]) TEST_TRANSFORM = transforms.Compose([transforms.Resize(size=(256, 256), interpolation=InterpolationMode.BICUBIC), transforms.CenterCrop(SIZE[0]), transforms.ToTensor(), transforms.Normalize(mean=MEAN, std=STD)])
[docs] def get_data_loaders(self): train_dataset = MyImagenetR(base_path() + 'imagenet-r/', train=True, download=True, transform=self.TRANSFORM) test_dataset = MyImagenetR(base_path() + 'imagenet-r/', train=False, download=True, transform=self.TEST_TRANSFORM) train, test = store_masked_loaders(train_dataset, test_dataset, self) return train, test
[docs] def get_class_names(self): if self.class_names is not None: return self.class_names pwd = os.path.dirname(os.path.abspath(__file__)) with open(pwd + '/imagenet_r_utils/label_to_class_name.pkl', 'rb') as f: label_to_class_name = pickle.load(f) class_names = label_to_class_name.values() class_names = [x.replace('_', ' ') for x in class_names] class_names = fix_class_names_order(class_names, self.args) self.class_names = class_names return self.class_names
[docs] @staticmethod def get_transform(): transform = transforms.Compose( [transforms.ToPILImage(), SequentialImagenetR.TRANSFORM]) return transform
[docs] @set_default_from_args("backbone") def get_backbone(): return "vit"
[docs] @staticmethod def get_loss(): return F.cross_entropy
[docs] @staticmethod def get_normalization_transform(): return transforms.Normalize(mean=SequentialImagenetR.MEAN, std=SequentialImagenetR.STD)
[docs] @staticmethod def get_denormalization_transform(): transform = DeNormalize(SequentialImagenetR.MEAN, SequentialImagenetR.STD) return transform
[docs] @set_default_from_args('n_epochs') def get_epochs(self): return 50
[docs] @set_default_from_args('batch_size') def get_batch_size(self): return 128