"""
Implements the Sequential CUB200 Dataset, as used in `Transfer without Forgetting <https://arxiv.org/abs/2206.00388>`_ (Version with ResNet50 as backbone).
"""
import torch
import torchvision.transforms as transforms
from typing import Tuple
from backbone.ResNetBottleneck import resnet50
from datasets.seq_cub200 import SequentialCUB200, MyCUB200, CUB200
from datasets.transforms.denormalization import DeNormalize
from datasets.utils import set_default_from_args
from datasets.utils.continual_dataset import store_masked_loaders
from utils.conf import base_path
[docs]
class MyCUB200RS(MyCUB200):
MEAN, STD = (0.4856, 0.4994, 0.4324), (0.2272, 0.2226, 0.2613)
TEST_TRANSFORM = transforms.Compose([transforms.Resize(MyCUB200.IMG_SIZE), transforms.ToTensor(), transforms.Normalize(MEAN, STD)])
[docs]
class SequentialCUB200RS(SequentialCUB200):
"""Sequential CUB200 Dataset. Version with ResNet50 (as in `Transfer without Forgetting`)
Args:
NAME (str): name of the dataset.
SETTING (str): setting of the dataset.
N_CLASSES_PER_TASK (int): number of classes per task.
N_TASKS (int): number of tasks.
SIZE (tuple): size of the images.
MEAN (tuple): mean of the dataset.
STD (tuple): standard deviation of the dataset.
TRANSFORM (torchvision.transforms): transformation to apply to the data.
TEST_TRANSFORM (torchvision.transforms): transformation to apply to the test data.
"""
NAME = 'seq-cub200-rs'
SETTING = 'class-il'
N_CLASSES_PER_TASK = 20
N_TASKS = 10
SIZE = (MyCUB200RS.IMG_SIZE, MyCUB200RS.IMG_SIZE)
MEAN, STD = (0.4856, 0.4994, 0.4324), (0.2272, 0.2226, 0.2613)
TRANSFORM = transforms.Compose([
transforms.Resize(MyCUB200RS.IMG_SIZE),
transforms.RandomCrop(MyCUB200RS.IMG_SIZE, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)])
TEST_TRANSFORM = MyCUB200RS.TEST_TRANSFORM
[docs]
def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]:
train_dataset = MyCUB200RS(base_path() + 'CUB200', train=True,
download=True, transform=SequentialCUB200RS.TRANSFORM)
test_dataset = CUB200(base_path() + 'CUB200', train=False,
download=True, transform=SequentialCUB200RS.TEST_TRANSFORM)
train, test = store_masked_loaders(
train_dataset, test_dataset, self)
return train, test
[docs]
@set_default_from_args("backbone")
def get_backbone():
return "resnet50_pt"
[docs]
@set_default_from_args('batch_size')
def get_batch_size(self):
return 16
[docs]
@set_default_from_args('n_epochs')
def get_epochs(self):
return 30