Source code for datasets.seq_cub200_rs

"""
Implements the Sequential CUB200 Dataset, as used in `Transfer without Forgetting <https://arxiv.org/abs/2206.00388>`_ (Version with ResNet50 as backbone).
"""

import torch
import torchvision.transforms as transforms
from typing import Tuple

from backbone.ResNetBottleneck import resnet50
from datasets.seq_cub200 import SequentialCUB200, MyCUB200, CUB200
from datasets.transforms.denormalization import DeNormalize
from datasets.utils import set_default_from_args
from datasets.utils.continual_dataset import store_masked_loaders
from utils.conf import base_path


[docs] class MyCUB200RS(MyCUB200): MEAN, STD = (0.4856, 0.4994, 0.4324), (0.2272, 0.2226, 0.2613) TEST_TRANSFORM = transforms.Compose([transforms.Resize(MyCUB200.IMG_SIZE), transforms.ToTensor(), transforms.Normalize(MEAN, STD)])
[docs] class SequentialCUB200RS(SequentialCUB200): """Sequential CUB200 Dataset. Version with ResNet50 (as in `Transfer without Forgetting`) Args: NAME (str): name of the dataset. SETTING (str): setting of the dataset. N_CLASSES_PER_TASK (int): number of classes per task. N_TASKS (int): number of tasks. SIZE (tuple): size of the images. MEAN (tuple): mean of the dataset. STD (tuple): standard deviation of the dataset. TRANSFORM (torchvision.transforms): transformation to apply to the data. TEST_TRANSFORM (torchvision.transforms): transformation to apply to the test data. """ NAME = 'seq-cub200-rs' SETTING = 'class-il' N_CLASSES_PER_TASK = 20 N_TASKS = 10 SIZE = (MyCUB200RS.IMG_SIZE, MyCUB200RS.IMG_SIZE) MEAN, STD = (0.4856, 0.4994, 0.4324), (0.2272, 0.2226, 0.2613) TRANSFORM = transforms.Compose([ transforms.Resize(MyCUB200RS.IMG_SIZE), transforms.RandomCrop(MyCUB200RS.IMG_SIZE, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(MEAN, STD)]) TEST_TRANSFORM = MyCUB200RS.TEST_TRANSFORM
[docs] def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]: train_dataset = MyCUB200RS(base_path() + 'CUB200', train=True, download=True, transform=SequentialCUB200RS.TRANSFORM) test_dataset = CUB200(base_path() + 'CUB200', train=False, download=True, transform=SequentialCUB200RS.TEST_TRANSFORM) train, test = store_masked_loaders( train_dataset, test_dataset, self) return train, test
[docs] @staticmethod def get_transform(): transform = transforms.Compose( [transforms.ToPILImage(), SequentialCUB200RS.TRANSFORM]) return transform
[docs] @set_default_from_args("backbone") def get_backbone(): return "resnet50_pt"
[docs] @staticmethod def get_normalization_transform(): return transforms.Normalize(SequentialCUB200RS.MEAN, SequentialCUB200RS.STD)
[docs] @staticmethod def get_denormalization_transform(): transform = DeNormalize(SequentialCUB200RS.MEAN, SequentialCUB200RS.STD) return transform
[docs] @set_default_from_args('batch_size') def get_batch_size(self): return 16
[docs] @set_default_from_args('n_epochs') def get_epochs(self): return 30