Source code for datasets.seq_cifar10_224_rs

# Copyright 2022-present, Lorenzo Bonicelli, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import Tuple

import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10

from datasets.seq_cifar10 import TCIFAR10, MyCIFAR10, base_path
from datasets.transforms.denormalization import DeNormalize
from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order,
                                              store_masked_loaders)
from datasets.utils import set_default_from_args


[docs] class SequentialCIFAR10224RS(ContinualDataset): """Sequential CIFAR10 Dataset. The images are resized to 224x224. Version with ResNet50 backbone. Args: NAME (str): name of the dataset. SETTING (str): setting of the dataset. N_CLASSES_PER_TASK (int): number of classes per task. N_TASKS (int): number of tasks. N_CLASSES (int): number of classes. SIZE (tuple): size of the images. MEAN (tuple): mean of the dataset. STD (tuple): standard deviation of the dataset. TRANSFORM (torchvision.transforms): transformations to apply to the dataset. """ NAME = 'seq-cifar10-224-rs' SETTING = 'class-il' N_CLASSES_PER_TASK = 2 N_TASKS = 5 N_CLASSES = N_CLASSES_PER_TASK * N_TASKS MEAN, STD = (0.4914, 0.4822, 0.4465), (0.2470, 0.2435, 0.2615) SIZE = (224, 224) TRANSFORM = transforms.Compose( [transforms.Resize(224), transforms.RandomCrop(224, padding=28), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(MEAN, STD)]) TEST_TRANSFORM = transforms.Compose([transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(MEAN, STD)])
[docs] def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]: """Class method that returns the train and test loaders.""" transform = self.TRANSFORM train_dataset = MyCIFAR10(base_path() + 'CIFAR10', train=True, download=True, transform=transform) test_dataset = TCIFAR10(base_path() + 'CIFAR10', train=False, download=True, transform=self.TEST_TRANSFORM) train, test = store_masked_loaders(train_dataset, test_dataset, self) return train, test
[docs] @staticmethod def get_transform(): transform = transforms.Compose( [transforms.ToPILImage(), SequentialCIFAR10224RS.TRANSFORM]) return transform
[docs] @set_default_from_args("backbone") def get_backbone(): return "resnet50"
[docs] @staticmethod def get_loss(): return F.cross_entropy
[docs] @staticmethod def get_normalization_transform(): transform = transforms.Normalize(SequentialCIFAR10224RS.MEAN, SequentialCIFAR10224RS.STD) return transform
[docs] @staticmethod def get_denormalization_transform(): transform = DeNormalize(SequentialCIFAR10224RS.MEAN, SequentialCIFAR10224RS.STD) return transform
[docs] @set_default_from_args('n_epochs') def get_epochs(self): return 50
[docs] @set_default_from_args('batch_size') def get_batch_size(self): return 32
[docs] def get_class_names(self): if self.class_names is not None: return self.class_names classes = CIFAR10(base_path() + 'CIFAR10', train=True, download=True).classes classes = fix_class_names_order(classes, self.args) self.class_names = classes return self.class_names