from typing import Tuple
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR100
from backbone.ResNetBottleneck import resnet50
from datasets.seq_cifar100 import TCIFAR100, MyCIFAR100
from datasets.transforms.denormalization import DeNormalize
from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order,
store_masked_loaders)
from utils.conf import base_path
from datasets.utils import set_default_from_args
[docs]
class SequentialCIFAR100224RS(ContinualDataset):
"""
The Sequential CIFAR100 dataset with 224x224 resolution with ResNet50 backbone.
Args:
NAME (str): name of the dataset.
SETTING (str): setting of the dataset.
N_CLASSES_PER_TASK (int): number of classes per task.
N_TASKS (int): number of tasks.
N_CLASSES (int): number of classes.
SIZE (tuple): size of the images.
MEAN (tuple): mean of the dataset.
STD (tuple): standard deviation of the dataset.
TRANSFORM (torchvision.transforms): transformation to apply to the data.
TEST_TRANSFORM (torchvision.transforms): transformation to apply to the test data.
"""
NAME = 'seq-cifar100-224-rs'
SETTING = 'class-il'
N_CLASSES_PER_TASK = 10
N_TASKS = 10
N_CLASSES = 100
SIZE = (224, 224)
MEAN, STD = (0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)
TRANSFORM = transforms.Compose(
[transforms.Resize(224),
transforms.RandomCrop(224, padding=28),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)]
)
TEST_TRANSFORM = transforms.Compose(
[transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(MEAN, STD)])
[docs]
def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]:
transform = self.TRANSFORM
test_transform = self.TEST_TRANSFORM
train_dataset = MyCIFAR100(base_path() + 'CIFAR100', train=True,
download=True, transform=transform)
test_dataset = TCIFAR100(base_path() + 'CIFAR100', train=False,
download=True, transform=test_transform)
train, test = store_masked_loaders(train_dataset, test_dataset, self)
return train, test
[docs]
@set_default_from_args("backbone")
def get_backbone():
return "resnet50"
[docs]
@staticmethod
def get_loss():
return F.cross_entropy
[docs]
@set_default_from_args('n_epochs')
def get_epochs(self):
return 50
[docs]
@set_default_from_args('batch_size')
def get_batch_size(self):
return 32
[docs]
def get_class_names(self):
if self.class_names is not None:
return self.class_names
classes = CIFAR100(base_path() + 'CIFAR100', train=True, download=True).classes
classes = fix_class_names_order(classes, self.args)
self.class_names = classes
return self.class_names