Source code for datasets.seq_cifar100_224_rs

from typing import Tuple

import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR100

from backbone.ResNetBottleneck import resnet50
from datasets.seq_cifar100 import TCIFAR100, MyCIFAR100
from datasets.transforms.denormalization import DeNormalize
from datasets.utils.continual_dataset import (ContinualDataset, fix_class_names_order,
                                              store_masked_loaders)
from utils.conf import base_path
from datasets.utils import set_default_from_args


[docs] class SequentialCIFAR100224RS(ContinualDataset): """ The Sequential CIFAR100 dataset with 224x224 resolution with ResNet50 backbone. Args: NAME (str): name of the dataset. SETTING (str): setting of the dataset. N_CLASSES_PER_TASK (int): number of classes per task. N_TASKS (int): number of tasks. N_CLASSES (int): number of classes. SIZE (tuple): size of the images. MEAN (tuple): mean of the dataset. STD (tuple): standard deviation of the dataset. TRANSFORM (torchvision.transforms): transformation to apply to the data. TEST_TRANSFORM (torchvision.transforms): transformation to apply to the test data. """ NAME = 'seq-cifar100-224-rs' SETTING = 'class-il' N_CLASSES_PER_TASK = 10 N_TASKS = 10 N_CLASSES = 100 SIZE = (224, 224) MEAN, STD = (0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761) TRANSFORM = transforms.Compose( [transforms.Resize(224), transforms.RandomCrop(224, padding=28), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(MEAN, STD)] ) TEST_TRANSFORM = transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(MEAN, STD)])
[docs] def get_data_loaders(self) -> Tuple[torch.utils.data.DataLoader, torch.utils.data.DataLoader]: transform = self.TRANSFORM test_transform = self.TEST_TRANSFORM train_dataset = MyCIFAR100(base_path() + 'CIFAR100', train=True, download=True, transform=transform) test_dataset = TCIFAR100(base_path() + 'CIFAR100', train=False, download=True, transform=test_transform) train, test = store_masked_loaders(train_dataset, test_dataset, self) return train, test
[docs] @staticmethod def get_transform(): transform = transforms.Compose( [transforms.ToPILImage(), SequentialCIFAR100224RS.TRANSFORM]) return transform
[docs] @set_default_from_args("backbone") def get_backbone(): return "resnet50"
[docs] @staticmethod def get_loss(): return F.cross_entropy
[docs] @staticmethod def get_normalization_transform(): transform = transforms.Normalize(SequentialCIFAR100224RS.MEAN, SequentialCIFAR100224RS.STD) return transform
[docs] @staticmethod def get_denormalization_transform(): transform = DeNormalize(SequentialCIFAR100224RS.MEAN, SequentialCIFAR100224RS.STD) return transform
[docs] @set_default_from_args('n_epochs') def get_epochs(self): return 50
[docs] @set_default_from_args('batch_size') def get_batch_size(self): return 32
[docs] def get_class_names(self): if self.class_names is not None: return self.class_names classes = CIFAR100(base_path() + 'CIFAR100', train=True, download=True).classes classes = fix_class_names_order(classes, self.args) self.class_names = classes return self.class_names