Source code for datasets.seq_chestx

import os
import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import Dataset
import numpy as np
import pickle
from PIL import Image
from typing import Tuple

from datasets.utils import set_default_from_args
from utils import smart_joint
from utils.conf import base_path
from datasets.utils.continual_dataset import ContinualDataset, fix_class_names_order, store_masked_loaders
from datasets.transforms.denormalization import DeNormalize
from torchvision.transforms.functional import InterpolationMode
from utils.prompt_templates import templates


[docs] class ChestX(Dataset): N_CLASSES = 6 """ To reduce the effect of the severe imbalance in the dataset, we drop the two classes with the smallest and largest amount of samples. """ LABELS = [ "Cardiomegaly", "Consolidation", "Edema", "Fibrosis", "Pleural Thickening", "Pneumothorax" ] """ Overrides the ChestX dataset to change the getitem function. """ def __init__(self, root, train=True, transform=None, target_transform=None, download=False) -> None: self.root = root self.train = train self.transform = transform self.target_transform = target_transform if not os.path.exists(f'{root}/train_images.pkl'): if download: from onedrivedownloader import download print('Downloading dataset') ln = "https://unimore365-my.sharepoint.com/:u:/g/personal/215580_unimore_it/EfmFCiLaGlpFgtAuv0YLpeYBeR54I7YHK75bu_Ex78mADA?e=K8rHpZ" download(ln, filename=smart_joint(root, 'chestx.zip'), unzip=True, unzip_path=root.rstrip('chestx'), clean=True) else: raise FileNotFoundError(f'File not found: {root}/train_images.pkl') if train: filename_labels = f'{self.root}/train_labels.pkl' filename_images = f'{self.root}/train_images.pkl' else: filename_labels = f'{self.root}/test_labels.pkl' filename_images = f'{self.root}/test_images.pkl' self.not_aug_transform = transforms.ToTensor() with open(filename_images, 'rb') as f: self.data = pickle.load(f) with open(filename_labels, 'rb') as f: self.targets = pickle.load(f) def __len__(self): return len(self.targets) def __getitem__(self, index: int) -> Tuple[Image.Image, int, Image.Image]: """ Gets the requested element from the dataset. :param index: index of the element to be returned :returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] img = np.repeat(img[np.newaxis, :, :], 3, axis=0) img = Image.fromarray((img * 255).astype(np.int8).transpose(1, 2, 0), mode='RGB') original_img = img.copy() not_aug_img = self.not_aug_transform(original_img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) if not self.train: return img, target if hasattr(self, 'logits'): return img, target, not_aug_img, self.logits[index] return img, target, not_aug_img
[docs] class SequentialChestX(ContinualDataset): NAME = 'seq-chestx' SETTING = 'class-il' N_TASKS = 2 N_CLASSES = 6 N_CLASSES_PER_TASK = 3 SIZE = (224, 224) MEAN, STD = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] normalize = transforms.Normalize(mean=MEAN, std=STD) TRANSFORM = transforms.Compose([ transforms.Resize(size=SIZE, interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), normalize, ]) TEST_TRANSFORM = transforms.Compose([ transforms.Resize(size=SIZE, interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), normalize, ])
[docs] def get_data_loaders(self): train_dataset = ChestX(base_path() + 'chestx', train=True, download=True, transform=self.TRANSFORM) test_dataset = ChestX(base_path() + 'chestx', train=False, download=True, transform=self.TEST_TRANSFORM) train, test = store_masked_loaders(train_dataset, test_dataset, self) return train, test
[docs] def get_class_names(self): if self.class_names is not None: return self.class_names classes = fix_class_names_order(ChestX.LABELS, self.args) self.class_names = classes return self.class_names
[docs] @staticmethod def get_prompt_templates(): return templates['cifar100']
[docs] @staticmethod def get_transform(): return transforms.Compose([transforms.ToPILImage(), SequentialChestX.TRANSFORM])
[docs] @set_default_from_args("backbone") def get_backbone(): return "vit"
[docs] @staticmethod def get_loss(): return F.cross_entropy
[docs] @staticmethod def get_normalization_transform(): return transforms.Normalize(mean=SequentialChestX.MEAN, std=SequentialChestX.STD)
[docs] @staticmethod def get_denormalization_transform(): transform = DeNormalize(mean=SequentialChestX.MEAN, std=SequentialChestX.STD) return transform
[docs] @set_default_from_args('n_epochs') def get_epochs(self): return 30
[docs] @set_default_from_args('batch_size') def get_batch_size(self): return 128