Source code for utils.conf

"""
This module contains utility functions for configuration settings.
"""

# Copyright 2020-present, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import logging
import os
import random
import sys
from functools import partial

from typing import List
import numpy as np
import torch
from torch.utils.data import DataLoader


[docs] def warn_once(*msg): """ Prints a warning message only once. Args: msg: the message to be printed """ msg = ' '.join([str(m) for m in msg]) if not hasattr(warn_once, 'warned'): warn_once.warned = set() if msg not in warn_once.warned: warn_once.warned.add(msg) logging.warning(msg)
def _get_gpu_memory_pynvml_all_processes(device_id: int = 0) -> int: """ Use pynvml to get the memory allocated on the GPU. Returns the memory allocated on the GPU in Bytes. """ if not hasattr(_get_gpu_memory_pynvml_all_processes, f'handle_{device_id}'): torch.cuda.pynvml.nvmlInit() # only once handle = torch.cuda.pynvml.nvmlDeviceGetHandleByIndex(device_id) setattr(_get_gpu_memory_pynvml_all_processes, f'handle_{device_id}', handle) handle = getattr(_get_gpu_memory_pynvml_all_processes, f'handle_{device_id}') procs = torch.cuda.pynvml.nvmlDeviceGetComputeRunningProcesses(handle) return sum([proc.usedGpuMemory for proc in procs])
[docs] def get_alloc_memory_all_devices(return_all=False) -> list[int]: """ Returns the memory allocated on all the available devices. By default, tries to return the memory read from pynvml, if available. Else, it returns the memory `reserved` by torch. If `return_all` is set to True, it returns a tuple with the memory reserved, allocated and from pynvml. Values are in Bytes. """ gpu_memory_reserved = [] gpu_memory_allocated = [] gpu_memory_nvidiasmi = [] for i in range(torch.cuda.device_count()): _ = torch.tensor([1]).to(i) # allocate memory to get more accurate reading from torch gpu_memory_reserved.append(torch.cuda.max_memory_reserved(i)) gpu_memory_allocated.append(torch.cuda.max_memory_allocated(i)) try: gpu_memory_nvidiasmi.append(_get_gpu_memory_pynvml_all_processes(i)) except BaseException as e: warn_once('Could not get memory from pynvml. Maybe try `pip install --force-reinstall gpustat`.', str(e)) gpu_memory_nvidiasmi.append(-1) if return_all: return gpu_memory_reserved, gpu_memory_allocated, gpu_memory_nvidiasmi else: if any([g > 0 for g in gpu_memory_nvidiasmi]): return gpu_memory_nvidiasmi return gpu_memory_allocated
[docs] def get_device(avail_devices: str = None) -> torch.device: """ Returns the least used GPU device if available else MPS or CPU. """ def _get_device(avail_devices: List[int] = None) -> torch.device: # get least used gpu by used memory if torch.cuda.is_available() and torch.cuda.device_count() > 0 and len(avail_devices) > 0: gpu_memory = get_alloc_memory_all_devices() gpu_memory = [gpu_memory[i] for i in avail_devices] device = torch.device(f'cuda:{avail_devices[np.argmin(gpu_memory)]}') return device try: if torch.backends.mps.is_available() and torch.backends.mps.is_built(): logging.warning("MSP support is still experimental. Use at your own risk!") return torch.device("mps") except BaseException: logging.error("Something went wrong with MPS. Using CPU.") return torch.device("cpu") # Permanently store the chosen device if not hasattr(get_device, 'device'): if avail_devices is not None: avail_devices = [int(d) for d in avail_devices.split(',')] else: avail_devices = list(range(torch.cuda.device_count())) if torch.cuda.is_available() else [] get_device.device = _get_device(avail_devices=avail_devices) logging.info(f'Using device {get_device.device}') return get_device.device
[docs] def base_path(override=None) -> str: """ Returns the base bath where to log accuracies and tensorboard data. Args: override: the path to override the default one. Once set, it is stored and used for all the next calls. Returns: the base path (default: `./data/`) """ if override is not None: if not os.path.exists(override): os.makedirs(override) if not override.endswith('/'): override += '/' setattr(base_path, 'path', override) if not hasattr(base_path, 'path'): setattr(base_path, 'path', './data/') return getattr(base_path, 'path')
[docs] def set_random_seed(seed: int) -> None: """ Sets the seeds at a certain value. Args: seed: the value to be set """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) try: torch.cuda.manual_seed_all(seed) except BaseException: print('Could not set cuda seed.')
[docs] def worker_init_fn(worker_id, num_workers, seed, rank=1): """ Sets the seeds for a worker of a dataloader. The seed of each worker is set to: `num_worker * rank + worker_id + seed` """ worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed)
[docs] def create_seeded_dataloader(args, dataset, non_verbose=False, **dataloader_args) -> DataLoader: """ Creates a dataloader object from a dataset, setting the seeds for the workers (if `--seed` is set). Args: args: the arguments of the program dataset: the dataset to be loaded verbose: whether to print the number of workers dataloader_args: external arguments of the dataloader Returns: the dataloader object """ n_cpus = 4 if not hasattr(os, 'sched_getaffinity') else len(os.sched_getaffinity(0)) num_workers = min(8, n_cpus) if args.num_workers is None else args.num_workers # limit to 8 cpus if not specified dataloader_args['num_workers'] = num_workers if 'num_workers' not in dataloader_args else dataloader_args['num_workers'] if not non_verbose: logging.info(f'Using {dataloader_args["num_workers"]} workers for the dataloader.') if args.seed is not None: worker_generator = torch.Generator() worker_generator.manual_seed(args.seed) else: worker_generator = None dataloader_args['generator'] = worker_generator if 'generator' not in dataloader_args else dataloader_args['generator'] init_fn = partial(worker_init_fn, num_workers=num_workers, seed=args.seed) if args.seed is not None else None dataloader_args['worker_init_fn'] = init_fn if 'worker_init_fn' not in dataloader_args else dataloader_args['worker_init_fn'] return DataLoader(dataset, **dataloader_args)