Source code for models.rpc

# Copyright 2022-present, Lorenzo Bonicelli, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
from datasets import get_dataset

from models.utils.continual_model import ContinualModel
from utils.args import add_rehearsal_args, ArgumentParser
from utils.buffer import Buffer


[docs] def dsimplex(num_classes=10): def simplex_coordinates2(m): # add the credit import numpy as np x = np.zeros([m, m + 1]) for j in range(0, m): x[j, j] = 1.0 a = (1.0 - np.sqrt(float(1 + m))) / float(m) for i in range(0, m): x[i, m] = a # Adjust coordinates so the centroid is at zero. c = np.zeros(m) for i in range(0, m): s = 0.0 for j in range(0, m + 1): s = s + x[i, j] c[i] = s / float(m + 1) for j in range(0, m + 1): for i in range(0, m): x[i, j] = x[i, j] - c[i] # Scale so each column has norm 1. UNIT NORMALIZED s = 0.0 for i in range(0, m): s = s + x[i, 0] ** 2 s = np.sqrt(s) for j in range(0, m + 1): for i in range(0, m): x[i, j] = x[i, j] / s return x feat_dim = num_classes - 1 ds = simplex_coordinates2(feat_dim) return ds
[docs] class RPC(ContinualModel): """Regular Polytope Classifier.""" NAME = 'rpc' COMPATIBILITY = ['class-il', 'task-il']
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: add_rehearsal_args(parser) return parser
def __init__(self, backbone, loss, args, transform, dataset=None): super(RPC, self).__init__(backbone, loss, args, transform, dataset=dataset) self.buffer = Buffer(self.args.buffer_size) self.rpchead = torch.from_numpy(dsimplex(self.cpt * self.n_tasks)).float().to(self.device)
[docs] def forward(self, x): x = self.net(x)[:, :-1] x = x @ self.rpchead return x
[docs] def end_task(self, dataset): # reduce coreset if self.current_task > 0: examples_per_class = self.args.buffer_size // (self.current_task * self.cpt) buf_x, buf_lab = self.buffer.get_all_data() self.buffer.empty() for tl in buf_lab.unique(): idx = tl == buf_lab ex, lab = buf_x[idx], buf_lab[idx] first = min(ex.shape[0], examples_per_class) self.buffer.add_data( examples=ex[:first], labels=lab[:first] ) # add new task examples_last_task = self.buffer.buffer_size - self.buffer.num_seen_examples examples_per_class = examples_last_task // self.cpt ce = torch.tensor([examples_per_class] * self.cpt).int() ce[torch.randperm(self.cpt)[:examples_last_task - (examples_per_class * self.cpt)]] += 1 with torch.no_grad(): for data in dataset.train_loader: labels, not_aug_inputs = data[1], data[2] not_aug_inputs = not_aug_inputs.to(self.device) if all(ce == 0): break flags = torch.zeros(len(labels)).bool() for j in range(len(flags)): if ce[labels[j] % self.cpt] > 0: flags[j] = True ce[labels[j] % self.cpt] -= 1 self.buffer.add_data(examples=not_aug_inputs[flags], labels=labels[flags])
[docs] def observe(self, inputs, labels, not_aug_inputs, epoch=None): self.opt.zero_grad() if not self.buffer.is_empty(): buf_inputs, buf_labels = self.buffer.get_data( self.args.minibatch_size, transform=self.transform, device=self.device) inputs = torch.cat((inputs, buf_inputs)) labels = torch.cat((labels, buf_labels)) outputs = self.net(inputs) losses = self.loss(outputs, labels, reduction='none') loss = losses.mean() loss.backward() self.opt.step() return loss.item()