Source code for models.moe_adapters_utils.model

from collections import OrderedDict
from typing import Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from .adapter import Adapter
from torch.distributions.normal import Normal
from collections import Counter

global_taskid = 0
global_is_train=True
[docs] class SparseDispatcher(object): """Helper for implementing a mixture of experts. The purpose of this class is to create input minibatches for the experts and to combine the results of the experts to form a unified output tensor. There are two functions: dispatch - take an input Tensor and create input Tensors for each expert. combine - take output Tensors from each expert and form a combined output Tensor. Outputs from different experts for the same batch element are summed together, weighted by the provided "gates". The class is initialized with a "gates" Tensor, which specifies which batch elements go to which experts, and the weights to use when combining the outputs. Batch element b is sent to expert e iff gates[b, e] != 0. The inputs and outputs are all two-dimensional [batch, depth]. Caller is responsible for collapsing additional dimensions prior to calling this class and reshaping the output to the original shape. See common_layers.reshape_like(). Example use: gates: a float32 `Tensor` with shape `[batch_size, num_experts]` inputs: a float32 `Tensor` with shape `[batch_size, input_size]` experts: a list of length `num_experts` containing sub-networks. dispatcher = SparseDispatcher(num_experts, gates) expert_inputs = dispatcher.dispatch(inputs) expert_outputs = [experts[i](expert_inputs[i]) for i in range(num_experts)] outputs = dispatcher.combine(expert_outputs) The preceding code sets the output for a particular example b to: output[b] = Sum_i(gates[b, i] * experts[i](inputs[b])) This class takes advantage of sparsity in the gate matrix by including in the `Tensor`s for expert i only the batch elements for which `gates[b, i] > 0`. """ def __init__(self, num_experts, gates): """Create a SparseDispatcher.""" self._gates = gates self._num_experts = num_experts sorted_experts, index_sorted_experts = torch.nonzero(gates).sort(0) # drop indices _, self._expert_index = sorted_experts.split(1, dim=1) # get according batch index for each expert self._batch_index = torch.nonzero(gates)[index_sorted_experts[:, 1], 0] # calculate num samples that each expert gets self._part_sizes = (gates > 0).sum(0).tolist() # expand gates to match with self._batch_index gates_exp = gates[self._batch_index.flatten()] self._nonzero_gates = torch.gather(gates_exp, 1, self._expert_index)
[docs] def dispatch(self, inp): """Create one input Tensor for each expert. The `Tensor` for a expert `i` contains the slices of `inp` corresponding to the batch elements `b` where `gates[b, i] > 0`. Args: inp: a `Tensor` of shape "[batch_size, <extra_input_dims>]` Returns: a list of `num_experts` `Tensor`s with shapes `[expert_batch_size_i, <extra_input_dims>]`. """ # assigns samples to experts whose gate is nonzero inp_exp = inp[self._batch_index].squeeze(1) return torch.split(inp_exp, self._part_sizes, dim=0)
[docs] def combine(self, expert_out, multiply_by_gates=True): """Sum together the expert output, weighted by the gates. The slice corresponding to a particular batch element `b` is computed as the sum over all experts `i` of the expert output, weighted by the corresponding gate values. If `multiply_by_gates` is set to False, the gate values are ignored. Args: expert_out: a list of `num_experts` `Tensor`s, each with shape `[expert_batch_size_i, <extra_output_dims>]`. multiply_by_gates: a boolean Returns: a `Tensor` with shape `[batch_size, <extra_output_dims>]`. """ # apply exp to expert outputs, so we are not longer in log space stitched = torch.cat(expert_out, 0) if multiply_by_gates: stitched = stitched.mul(self._nonzero_gates) # 加权 zeros = torch.zeros(self._gates.size(0), expert_out[-1].size(1), device=stitched.device) # combine samples that have been processed by the same k experts combined = zeros.index_add(0, self._batch_index, stitched.float()) # add eps to all zero values in order to avoid nans when going back to log space # back to log space return combined
[docs] def expert_to_gates(self): """Gate values corresponding to the examples in the per-expert `Tensor`s. Returns: a list of `num_experts` one-dimensional `Tensor`s with type `tf.float32` and shapes `[expert_batch_size_i]` """ # split nonzero gates for each expert return torch.split(self._nonzero_gates, self._part_sizes, dim=0)
[docs] class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1): super().__init__() # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = None self.stride = stride if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 self.downsample = nn.Sequential(OrderedDict([ ("-1", nn.AvgPool2d(stride)), ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), ("1", nn.BatchNorm2d(planes * self.expansion)) ]))
[docs] def forward(self, x: torch.Tensor): identity = x out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.avgpool(out) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out
[docs] class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads
[docs] def forward(self, x): x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False ) return x[0]
[docs] class ModifiedResNet(nn.Module): """ A ResNet class that is similar to torchvision's but contains the following changes: - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 - The final pooling layer is a QKV attention instead of an average pool """ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): super().__init__() self.output_dim = output_dim self.input_resolution = input_resolution # the 3-layer stem self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(width // 2) self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(width // 2) self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(width) self.avgpool = nn.AvgPool2d(2) self.relu = nn.ReLU(inplace=True) # residual layers self._inplanes = width # this is a *mutable* variable used during construction self.layer1 = self._make_layer(width, layers[0]) self.layer2 = self._make_layer(width * 2, layers[1], stride=2) self.layer3 = self._make_layer(width * 4, layers[2], stride=2) self.layer4 = self._make_layer(width * 8, layers[3], stride=2) embed_dim = width * 32 # the ResNet feature dimension self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) def _make_layer(self, planes, blocks, stride=1): layers = [Bottleneck(self._inplanes, planes, stride)] self._inplanes = planes * Bottleneck.expansion for _ in range(1, blocks): layers.append(Bottleneck(self._inplanes, planes)) return nn.Sequential(*layers)
[docs] def forward(self, x): def stem(x): for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: x = self.relu(bn(conv(x))) x = self.avgpool(x) return x x = x.type(self.conv1.weight.dtype) x = stem(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.attnpool(x) return x
[docs] class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16."""
[docs] def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type)
[docs] class QuickGELU(nn.Module):
[docs] def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x)
[docs] class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, text_or_image=None): super().__init__() self.register_buffer("mean", torch.tensor([0.0])) self.register_buffer("std", torch.tensor([1.0])) self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask self.is_train = global_is_train self.step = 1 self.top_k = 2 self.ffn_num = 64 self.experts_num = 2 self.softmax = nn.Softmax(1) self.softplus = nn.Softplus() self.noisy_gating = True self.adaptmlp_list = nn.ModuleList() self.text_or_image = text_or_image if text_or_image == 'text': # print('text transformer') self.choose_map_text = torch.zeros([ self.experts_num]) else: # print('image transformer') self.choose_map_image = torch.zeros([ self.experts_num]) self.router_list = nn.ParameterList() self.w_noise_list = nn.ParameterList() for i in range(self.step): self.router_list.append(nn.Parameter(torch.zeros(d_model, self.experts_num), requires_grad=True)) self.w_noise_list.append(nn.Parameter(torch.zeros(d_model, self.experts_num), requires_grad=True)) for i in range(self.experts_num): # self.adaptmlp = Adapter(d_model=d_model, dropout=0.1, bottleneck=self.ffn_num, init_option='lora', adapter_scalar=0.1, adapter_layernorm_option='none', ) self.adaptmlp_list.append(self.adaptmlp) # self.taskid = None
[docs] def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
[docs] def cv_squared(self, x): """The squared coefficient of variation of a sample. Useful as a loss to encourage a positive distribution to be more uniform. Epsilons added for numerical stability. Returns 0 for an empty Tensor. Args: x: a `Tensor`. Returns: a `Scalar`. """ eps = 1e-10 # if only num_experts = 1 if x.shape[0] == 1: return torch.tensor([0], device=x.device, dtype=x.dtype) return x.float().var() / (x.float().mean()**2 + eps)
def _gates_to_load(self, gates): """Compute the true load per expert, given the gates. The load is the number of examples for which the corresponding gate is >0. Args: gates: a `Tensor` of shape [batch_size, n] Returns: a float32 `Tensor` of shape [n] """ return (gates > 0).sum(0) def _prob_in_top_k(self, clean_values, noisy_values, noise_stddev, noisy_top_values): """Helper function to NoisyTopKGating. Computes the probability that value is in top k, given different random noise. This gives us a way of backpropagating from a loss that balances the number of times each expert is in the top k experts per example. In the case of no noise, pass in None for noise_stddev, and the result will not be differentiable. Args: clean_values: a `Tensor` of shape [batch, n]. noisy_values: a `Tensor` of shape [batch, n]. Equal to clean values plus normally distributed noise with standard deviation noise_stddev. noise_stddev: a `Tensor` of shape [batch, n], or None noisy_top_values: a `Tensor` of shape [batch, m]. "values" Output of tf.top_k(noisy_top_values, m). m >= k+1 Returns: a `Tensor` of shape [batch, n]. """ # print('1231',clean_values) # 全nan batch = clean_values.size(0) m = noisy_top_values.size(1) top_values_flat = noisy_top_values.flatten() threshold_positions_if_in = torch.arange(batch, device=clean_values.device) * m + self.top_k threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in), 1) is_in = torch.gt(noisy_values, threshold_if_in) threshold_positions_if_out = threshold_positions_if_in - 1 threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_out), 1) # is each value currently in the top k. normal = Normal(self.mean, self.std) # prob_if_in = normal.cdf((clean_values - threshold_if_in)/noise_stddev) prob_if_out = normal.cdf((clean_values - threshold_if_out)/noise_stddev) prob = torch.where(is_in, prob_if_in, prob_if_out) return prob
[docs] def noisy_top_k_gating(self, x, train, w_gate, w_noise, noise_epsilon=1e-2): """Noisy top-k gating. See paper: https://arxiv.org/abs/1701.06538. Args: x: input Tensor with shape [batch_size, input_size] train: a boolean - we only add noise at training time. noise_epsilon: a float Returns: gates: a Tensor with shape [batch_size, num_experts] load: a Tensor with shape [num_experts] """ clean_logits = x @ w_gate.to(x) if self.noisy_gating and train: raw_noise_stddev = x @ w_noise.to(x) noise_stddev = ((self.softplus(raw_noise_stddev) + noise_epsilon)) noisy_logits = clean_logits + (torch.randn_like(clean_logits) * noise_stddev) logits = noisy_logits else: logits = clean_logits # calculate topk + 1 that will be needed for the noisy gates top_logits, top_indices = logits.topk(min(self.top_k + 1, self.experts_num), dim=1) top_k_logits = top_logits[:, :self.top_k] top_k_indices = top_indices[:, :self.top_k] top_k_gates = self.softmax(top_k_logits) zeros = torch.zeros_like(logits) gates = zeros.scatter(1, top_k_indices, top_k_gates) if self.noisy_gating and self.top_k < self.experts_num and train: # 目前未用上 load = (self._prob_in_top_k(clean_logits, noisy_logits, noise_stddev, top_logits)).sum(0) else: load = self._gates_to_load(gates) return gates, load
[docs] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) if global_taskid is not None: x_re = x.permute(1, 0, 2)[:, 0, :] gates, load = self.noisy_top_k_gating(x_re, self.is_train, self.router_list[global_taskid], self.w_noise_list[global_taskid]) importance = gates.sum(0) nonzero_indices = torch.nonzero(gates) counter = Counter(nonzero_indices[:, 1].tolist()) for number, count in counter.items(): if self.text_or_image == 'text': self.choose_map_text[number] = self.choose_map_text[number] + count else: self.choose_map_image[number] = self.choose_map_image[number] + count dispatcher = SparseDispatcher(self.experts_num, gates) expert_inputs = dispatcher.dispatch(x.permute(1, 0, 2).view(x.shape[1], -1)) expert_outputs = [self.adaptmlp_list[i](expert_inputs[i].view(expert_inputs[i].shape[0], x.shape[0], x.shape[2]).to(x), add_residual=False) for i in range(self.experts_num)] i = 0 while i < len(expert_outputs): if expert_outputs[i].shape[0] == 0: expert_outputs.pop(i) else: expert_outputs[i] = expert_outputs[i].view(expert_outputs[i].shape[0], -1) i += 1 y = dispatcher.combine(expert_outputs) y = y.view(x.shape[1], x.shape[0], x.shape[2]) x = x + self.mlp(self.ln_2(x)) + y.permute(1, 0, 2) else: x = x + self.mlp(self.ln_2(x)) return x
[docs] class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, text_or_image=None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask, text_or_image) for _ in range(layers)])
[docs] def forward(self, x: torch.Tensor): return self.resblocks(x)
[docs] class VisualTransformer(nn.Module): def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int, text_or_image=None): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim # Added so this info is available. should not change anything. self.patch_size = patch_size self.width = width self.layers = layers self.heads = heads self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads, text_or_image=text_or_image) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
[docs] def forward(self, x: torch.Tensor): x = self.conv1(x) x = x.reshape(x.shape[0], x.shape[1], -1) x = x.permute(0, 2, 1) x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_post(x[:, 0, :]) if self.proj is not None: x = x @ self.proj return x
[docs] class CLIP(nn.Module): def __init__(self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int, baseline = False ): super().__init__() self.baseline = baseline self.context_length = context_length if isinstance(vision_layers, (tuple, list)): vision_heads = vision_width * 32 // 64 self.visual = ModifiedResNet( layers=vision_layers, output_dim=embed_dim, heads=vision_heads, input_resolution=image_resolution, width=vision_width ) else: vision_heads = vision_width // 64 self.visual = VisualTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim, text_or_image='image' ) self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask(), text_or_image='text' ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.initialize_parameters()
[docs] def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) if isinstance(self.visual, ModifiedResNet): if self.visual.attnpool is not None: std = self.visual.attnpool.c_proj.in_features ** -0.5 nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: for name, param in resnet_block.named_parameters(): if name.endswith("bn3.weight"): nn.init.zeros_(param) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
[docs] def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask
@property def dtype(self): return self.visual.conv1.weight.dtype
[docs] def encode_image(self, image): return self.visual(image.type(self.dtype))
[docs] def encode_text(self, text): x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding.type(self.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x
[docs] def forward(self, image, text, taskid, is_train): global global_taskid, global_is_train global_taskid = taskid global_is_train = is_train if image is None: return self.encode_text(text) elif text is None: return self.encode_image(image) image_features = self.encode_image(image) text_features = self.encode_text(text) image_features = image_features / image_features.norm(dim=-1, keepdim=True) text_features = text_features / text_features.norm(dim=-1, keepdim=True) # if self.baseline: logit_scale = self.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logits_per_image.t() return logits_per_image, logits_per_text
[docs] def convert_weights(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() if isinstance(l, nn.MultiheadAttention): for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: tensor = getattr(l, attr) if tensor is not None: tensor.data = tensor.data.half() for name in ["text_projection", "proj"]: if hasattr(l, name): attr = getattr(l, name) if attr is not None: attr.data = attr.data.half() model.apply(_convert_weights_to_fp16)
[docs] def build_model(state_dict: dict): vit = "visual.proj" in state_dict if vit: vision_width = state_dict["visual.conv1.weight"].shape[0] vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) image_resolution = vision_patch_size * grid_size else: counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] vision_layers = tuple(counts) vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) vision_patch_size = None assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] image_resolution = output_width * 32 embed_dim = state_dict["text_projection"].shape[1] context_length = state_dict["positional_embedding"].shape[0] vocab_size = state_dict["token_embedding.weight"].shape[0] transformer_width = state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) model = CLIP( embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers ) for key in ["input_resolution", "context_length", "vocab_size"]: if key in state_dict: del state_dict[key] model.load_state_dict(state_dict, strict=False) for p in model.parameters(): p.data = p.data.float() return model.eval()