Source code for models.mer

# Copyright 2022-present, Lorenzo Bonicelli, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
import logging

from models.utils.continual_model import ContinualModel
from utils.args import add_rehearsal_args, ArgumentParser
from utils.buffer import Buffer


[docs] class Mer(ContinualModel): """Continual Learning via Meta-Experience Replay (Alg 6).""" NAME = 'mer' COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual']
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: add_rehearsal_args(parser) parser.set_defaults(batch_size=1) parser.add_argument('--beta', type=float, required=True, help='Within-batch update beta parameter.') parser.add_argument('--gamma', type=float, required=True, help='Across-batch update gamma parameter.') parser.add_argument('--batch_num', type=int, default=1, help='Number of batches extracted from the buffer.') return parser
def __init__(self, backbone, loss, args, transform, dataset=None): if args.batch_size != 1: logging.warning('MER is designed to work with batch_size=1. We will use batch_size=1.') args.batch_size = 1 super(Mer, self).__init__(backbone, loss, args, transform, dataset=dataset) self.buffer = Buffer(self.args.buffer_size)
[docs] def observe(self, inputs, labels, not_aug_inputs, epoch=None): theta_A0 = self.net.get_params().data.clone() for i in range(self.args.batch_num): theta_Wi0 = self.net.get_params().data.clone() if not self.buffer.is_empty(): buf_inputs, buf_labels = self.buffer.get_data(self.args.minibatch_size, transform=self.transform, device=self.device) batch_inputs = torch.cat((buf_inputs, inputs)) batch_labels = torch.cat((buf_labels, torch.tensor([labels]).to(self.device))) else: batch_inputs, batch_labels = inputs, torch.tensor([labels]).to(self.device) # within-batch step self.opt.zero_grad() outputs = self.net(batch_inputs) loss = self.loss(outputs, batch_labels) loss.backward() self.opt.step() # within batch reptile meta-update new_params = theta_Wi0 + self.args.beta * (self.net.get_params() - theta_Wi0) self.net.set_params(new_params) self.buffer.add_data(examples=not_aug_inputs, labels=labels) # across batch reptile meta-update new_new_params = theta_A0 + self.args.gamma * (self.net.get_params() - theta_A0) self.net.set_params(new_new_params) return loss.item()