Source code for models.l2p_utils.prompt

import torch
import torch.nn as nn


[docs] class Prompt(nn.Module): def __init__(self, length=5, embed_dim=768, embedding_key='mean', prompt_init='uniform', prompt_pool=False, prompt_key=False, pool_size=None, top_k=None, batchwise_prompt=False, prompt_key_init='uniform', prompt_shuffle=False): super().__init__() self.length = length self.embed_dim = embed_dim self.prompt_pool = prompt_pool self.embedding_key = embedding_key self.prompt_init = prompt_init self.prompt_key = prompt_key self.pool_size = pool_size self.top_k = top_k self.batchwise_prompt = batchwise_prompt self.prompt_shuffle = prompt_shuffle if self.prompt_pool: prompt_pool_shape = (pool_size, length, embed_dim) if prompt_init == 'zero': self.prompt = nn.Parameter(torch.zeros(prompt_pool_shape)) elif prompt_init == 'uniform': self.prompt = nn.Parameter(torch.randn(prompt_pool_shape)) nn.init.uniform_(self.prompt, -1, 1) # if using learnable prompt keys if prompt_key: key_shape = (pool_size, embed_dim) if prompt_key_init == 'zero': self.prompt_key = nn.Parameter(torch.zeros(key_shape)) elif prompt_key_init == 'uniform': self.prompt_key = nn.Parameter(torch.randn(key_shape)) nn.init.uniform_(self.prompt_key, -1, 1) else: # else use mean of prompt as key # only compatible with prompt, not prefix prompt_mean = torch.mean(self.prompt, dim=1) self.prompt_key = prompt_mean
[docs] def l2_normalize(self, x, dim=None, epsilon=1e-12): """Normalizes a given vector or matrix.""" square_sum = torch.sum(x ** 2, dim=dim, keepdim=True) x_inv_norm = torch.rsqrt(torch.maximum(square_sum, torch.tensor(epsilon, device=x.device))) return x * x_inv_norm
[docs] def forward(self, x_embed, prompt_mask=None, cls_features=None): out = dict() if self.prompt_pool: if self.embedding_key == 'mean': x_embed_mean = torch.mean(x_embed, dim=1) elif self.embedding_key == 'max': x_embed_mean = torch.max(x_embed, dim=1)[0] elif self.embedding_key == 'mean_max': x_embed_mean = torch.max(x_embed, dim=1)[0] + 2 * torch.mean(x_embed, dim=1) elif self.embedding_key == 'cls': if cls_features is None: x_embed_mean = torch.max(x_embed, dim=1)[0] # B, C else: x_embed_mean = cls_features else: raise NotImplementedError("Not supported way of calculating embedding keys!") prompt_norm = self.l2_normalize(self.prompt_key, dim=1) # Pool_size, C x_embed_norm = self.l2_normalize(x_embed_mean, dim=1) # B, C similarity = torch.matmul(x_embed_norm, prompt_norm.t()) # B, Pool_size if prompt_mask is None: _, idx = torch.topk(similarity, k=self.top_k, dim=1) # B, top_k if self.batchwise_prompt: prompt_id, id_counts = torch.unique(idx, return_counts=True, sorted=True) # In jnp.unique, when the 'size' is specified and there are fewer than the indicated number of elements, # the remaining elements will be filled with 'fill_value', the default is the minimum value along the specified dimension. # Unless dimension is specified, this will be flattend if it is not already 1D. if prompt_id.shape[0] < self.pool_size: prompt_id = torch.cat([prompt_id, torch.full((self.pool_size - prompt_id.shape[0],), torch.min(idx.flatten()), device=prompt_id.device)]) id_counts = torch.cat([id_counts, torch.full((self.pool_size - id_counts.shape[0],), 0, device=id_counts.device)]) _, major_idx = torch.topk(id_counts, k=self.top_k) # top_k major_prompt_id = prompt_id[major_idx] # top_k # expand to batch idx = major_prompt_id.expand(x_embed.shape[0], -1) # B, top_k else: idx = prompt_mask # B, top_k if self.prompt_shuffle: idx = idx[:, torch.randperm(idx.shape[1])] batched_prompt_raw = self.prompt[idx] # B, top_k, length, C batch_size, top_k, length, c = batched_prompt_raw.shape batched_prompt = batched_prompt_raw.reshape(batch_size, top_k * length, c) # B, top_k * length, C out['prompt_idx'] = idx # Debugging, return sim as well out['prompt_norm'] = prompt_norm out['x_embed_norm'] = x_embed_norm out['similarity'] = similarity # Put pull_constraint loss calculation inside batched_key_norm = prompt_norm[idx] # B, top_k, C out['selected_key'] = batched_key_norm x_embed_norm = x_embed_norm.unsqueeze(1) # B, 1, C sim = batched_key_norm * x_embed_norm # B, top_k, C reduce_sim = torch.sum(sim) / x_embed.shape[0] # Scalar out['reduce_sim'] = reduce_sim else: if self.prompt_init == 'zero': self.prompt = nn.Parameter(torch.zeros(self.length, self.embed_dim)) elif self.prompt_init == 'uniform': self.prompt = nn.Parameter(torch.randn(self.length, self.embed_dim)) nn.init.uniform_(self.prompt) batched_prompt = self.prompt.unsqueeze(0).expand(x_embed.shape[0], -1, -1) # The input with the prompt concatenated to the front. [B, prompt+token, C] out['total_prompt_len'] = batched_prompt.shape[1] out['prompted_embedding'] = torch.cat([batched_prompt, x_embed], dim=1) return out