Source code for models.gss

# Copyright 2020-present, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch

from models.utils.continual_model import ContinualModel
from utils.args import add_rehearsal_args, ArgumentParser
from utils.gss_buffer import Buffer as Buffer


[docs] class Gss(ContinualModel): """Gradient based sample selection for online continual learning.""" NAME = 'gss' COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual']
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: add_rehearsal_args(parser) parser.add_argument('--batch_num', type=int, default=1, help='Number of batches extracted from the buffer.') parser.add_argument('--gss_minibatch_size', type=int, default=None, help='The batch size of the gradient comparison.') return parser
def __init__(self, backbone, loss, args, transform, dataset=None): super(Gss, self).__init__(backbone, loss, args, transform, dataset=dataset) self.buffer = Buffer(self.args.buffer_size, self.device, self.args.gss_minibatch_size if self.args.gss_minibatch_size is not None else self.args.minibatch_size, self) self.alj_nepochs = self.args.batch_num
[docs] def get_grads(self, inputs, labels): self.net.eval() self.opt.zero_grad() outputs = self.net(inputs) loss = self.loss(outputs, labels) loss.backward() grads = self.net.get_grads().clone().detach() self.opt.zero_grad() self.net.train() if len(grads.shape) == 1: grads = grads.unsqueeze(0) return grads
[docs] def observe(self, inputs, labels, not_aug_inputs, epoch=None): real_batch_size = inputs.shape[0] self.buffer.drop_cache() self.buffer.reset_fathom() for _ in range(self.alj_nepochs): self.opt.zero_grad() if not self.buffer.is_empty(): buf_inputs, buf_labels = self.buffer.get_data( self.args.minibatch_size, transform=self.transform) tinputs = torch.cat((inputs, buf_inputs)) tlabels = torch.cat((labels, buf_labels)) else: tinputs = inputs tlabels = labels outputs = self.net(tinputs) loss = self.loss(outputs, tlabels) loss.backward() self.opt.step() self.buffer.add_data(examples=not_aug_inputs, labels=labels[:real_batch_size]) return loss.item()