Source code for models.fdr

# Copyright 2020-present, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch

from models.utils.continual_model import ContinualModel
from utils.args import add_rehearsal_args, ArgumentParser
from utils.buffer import Buffer


[docs] class Fdr(ContinualModel): """Continual learning via Function Distance Regularization.""" NAME = 'fdr' COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual']
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: add_rehearsal_args(parser) parser.add_argument('--alpha', type=float, required=True, help='Penalty weight.') return parser
def __init__(self, backbone, loss, args, transform, dataset=None): super(Fdr, self).__init__(backbone, loss, args, transform, dataset=dataset) self.buffer = Buffer(self.args.buffer_size) self.i = 0 self.soft = torch.nn.Softmax(dim=1) self.logsoft = torch.nn.LogSoftmax(dim=1)
[docs] def end_task(self, dataset): examples_per_task = self.args.buffer_size // self.current_task if self.current_task > 0 else self.args.buffer_size if self.current_task > 0: buf_x, buf_log, buf_tl = self.buffer.get_all_data() self.buffer.empty() for ttl in buf_tl.unique(): idx = (buf_tl == ttl) ex, log, tasklab = buf_x[idx], buf_log[idx], buf_tl[idx] first = min(ex.shape[0], examples_per_task) self.buffer.add_data( examples=ex[:first], logits=log[:first], task_labels=tasklab[:first] ) counter = 0 with torch.no_grad(): for i, data in enumerate(dataset.train_loader): inputs, not_aug_inputs = data[0], data[2] inputs = inputs.to(self.device) not_aug_inputs = not_aug_inputs.to(self.device) outputs = self.net(inputs) if examples_per_task - counter < 0: break self.buffer.add_data(examples=not_aug_inputs[:(examples_per_task - counter)], logits=outputs.data[:(examples_per_task - counter)], task_labels=(torch.ones(self.args.batch_size) * self.current_task)[:(examples_per_task - counter)]) counter += self.args.batch_size
[docs] def observe(self, inputs, labels, not_aug_inputs, epoch=None): self.i += 1 self.opt.zero_grad() outputs = self.net(inputs) loss = self.loss(outputs, labels) loss.backward() self.opt.step() if not self.buffer.is_empty(): self.opt.zero_grad() buf_inputs, buf_logits, _ = self.buffer.get_data(self.args.minibatch_size, transform=self.transform, device=self.device) buf_outputs = self.net(buf_inputs) loss = torch.norm(self.soft(buf_outputs) - self.soft(buf_logits), 2, 1).mean() assert not torch.isnan(loss) loss.backward() self.opt.step() return loss.item()