Source code for models.ewc_on

# Copyright 2020-present, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
import torch.nn.functional as F

from models.utils.continual_model import ContinualModel
from utils.args import ArgumentParser


[docs] class EwcOn(ContinualModel): """Continual learning via online EWC.""" NAME = 'ewc_on' COMPATIBILITY = ['class-il', 'domain-il', 'task-il']
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: parser.add_argument('--e_lambda', type=float, required=True, help='lambda weight for EWC') parser.add_argument('--gamma', type=float, required=True, help='gamma parameter for EWC online') return parser
def __init__(self, backbone, loss, args, transform, dataset=None): super(EwcOn, self).__init__(backbone, loss, args, transform, dataset=dataset) self.logsoft = nn.LogSoftmax(dim=1) self.checkpoint = None self.fish = None
[docs] def penalty(self): if self.checkpoint is None: return torch.tensor(0.0).to(self.device) else: penalty = self.args.e_lambda * (self.fish * ((self.net.get_params() - self.checkpoint) ** 2)).sum() return penalty
[docs] def end_task(self, dataset): fish = torch.zeros_like(self.net.get_params()) for j, data in enumerate(dataset.train_loader): inputs, labels = data[0], data[1] inputs, labels = inputs.to(self.device), labels.to(self.device) for ex, lab in zip(inputs, labels): self.opt.zero_grad() output = self.net(ex.unsqueeze(0)) loss = - F.nll_loss(self.logsoft(output), lab.unsqueeze(0), reduction='none') exp_cond_prob = torch.mean(torch.exp(loss.detach().clone())) loss = torch.mean(loss) loss.backward() fish += exp_cond_prob * self.net.get_grads() ** 2 fish /= (len(dataset.train_loader) * self.args.batch_size) if self.fish is None: self.fish = fish else: self.fish *= self.args.gamma self.fish += fish self.checkpoint = self.net.get_params().data.clone()
[docs] def get_penalty_grads(self): return self.args.e_lambda * 2 * self.fish * (self.net.get_params().data - self.checkpoint)
[docs] def observe(self, inputs, labels, not_aug_inputs, epoch=None): self.opt.zero_grad() outputs = self.net(inputs) if self.checkpoint is not None: self.net.set_grads(self.get_penalty_grads()) loss = self.loss(outputs, labels) assert not torch.isnan(loss) loss.backward() self.opt.step() return loss.item()