Source code for models.er_ace_star

# Copyright 2022-present, Lorenzo Bonicelli, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch

from models.utils.continual_model import ContinualModel
from utils.args import add_rehearsal_args, ArgumentParser
from utils.buffer import Buffer
from models.star_utils.star_perturber import Perturber, add_perturb_args


[docs] class ErACESTAR(ContinualModel): NAME = 'er_ace_star' COMPATIBILITY = ['class-il', 'task-il']
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: # add arguments for STAR add_perturb_args(parser) add_rehearsal_args(parser) return parser
def __init__(self, backbone, loss, args, transform, dataset=None): super().__init__(backbone, loss, args, transform, dataset) self.buffer = Buffer(self.args.buffer_size) self.pert = Perturber(self) self.seen_so_far = torch.tensor([]).long().to(self.device)
[docs] def observe(self, inputs, labels, not_aug_inputs, epoch=None): present = labels.unique() self.seen_so_far = torch.cat([self.seen_so_far, present]).unique() self.opt.zero_grad() if not self.buffer.is_empty(): # STAR here buf_inputs, buf_labels = self.buffer.get_data( self.args.minibatch_size, transform=self.transform) self.pert(buf_inputs, buf_labels) # normal er_ace resumes logits = self.net(inputs) mask = torch.zeros_like(logits) mask[:, present] = 1 if self.seen_so_far.max() < (self.num_classes - 1): mask[:, self.seen_so_far.max():] = 1 if self.current_task > 0: logits = logits.masked_fill(mask == 0, torch.finfo(logits.dtype).min) loss = self.loss(logits, labels) loss_re = torch.tensor(0.) if self.current_task > 0: # sample from buffer buf_inputs, buf_labels = self.buffer.get_data( self.args.minibatch_size, transform=self.transform, device=self.device) loss_re = self.loss(self.net(buf_inputs), buf_labels) loss += loss_re loss.backward() self.opt.step() self.buffer.add_data(examples=not_aug_inputs, labels=labels) return loss.item()