Source code for models.er_ace_lider

import torch
from utils.buffer import Buffer
from utils.args import *
from models.utils.lider_model import LiderOptimizer, add_lipschitz_args


[docs] class ErACELider(LiderOptimizer): """ER-ACE with future not fixed (as made by authors). Treated with LiDER!""" NAME = 'er_ace_lider' COMPATIBILITY = ['class-il', 'task-il']
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: add_rehearsal_args(parser) add_lipschitz_args(parser) return parser
def __init__(self, backbone, loss, args, transform, dataset=None): super().__init__(backbone, loss, args, transform, dataset=dataset) self.buffer = Buffer(self.args.buffer_size) self.seen_so_far = torch.tensor([]).long().to(self.device)
[docs] def begin_task(self, dataset): if self.current_task == 0: self.net.set_return_prerelu(True) self.init_net(dataset)
[docs] def to(self, device): super().to(device) self.seen_so_far = self.seen_so_far.to(device)
[docs] def observe(self, inputs: torch.Tensor, labels: torch.Tensor, not_aug_inputs: torch.Tensor, epoch=None): present = labels.unique() self.seen_so_far = torch.cat([self.seen_so_far, present]).unique() logits = self.net(inputs) mask = torch.zeros_like(logits) mask[:, present] = 1 self.opt.zero_grad() if self.seen_so_far.max() < (self.num_classes - 1): mask[:, self.seen_so_far.max():] = 1 if self.current_task > 0: logits = logits.masked_fill(mask == 0, torch.finfo(logits.dtype).min) loss = self.loss(logits, labels) tot_loss = loss.item() loss.backward() if self.current_task > 0: # sample from buffer buf_inputs, buf_labels = self.buffer.get_data( self.args.minibatch_size, transform=self.transform, device=self.device) loss_re = self.loss(self.net(buf_inputs), buf_labels) tot_loss += loss_re.item() loss_re.backward() if not self.buffer.is_empty(): if self.args.alpha_lip_lambda > 0: buf_inputs, _ = self.buffer.get_data(self.args.minibatch_size, transform=self.transform, device=self.device) _, buf_output_features = self.net(buf_inputs, returnt='full') lip_inputs = [buf_inputs] + buf_output_features loss_lip_minimize = self.args.alpha_lip_lambda * self.minimization_lip_loss(lip_inputs) tot_loss += loss_lip_minimize.item() loss_lip_minimize.backward() if self.args.beta_lip_lambda > 0: buf_inputs, _ = self.buffer.get_data(self.args.minibatch_size, transform=self.transform, device=self.device) _, buf_output_features = self.net(buf_inputs, returnt='full') lip_inputs = [buf_inputs] + buf_output_features loss_lip_dyn_budget = self.args.beta_lip_lambda * self.dynamic_budget_lip_loss(lip_inputs) tot_loss += loss_lip_dyn_budget.item() loss_lip_dyn_budget.backward() self.opt.step() self.buffer.add_data(examples=not_aug_inputs, labels=labels) return tot_loss