Source code for models.er

"""
This module implements the simplest form of rehearsal training: Experience Replay. It maintains a buffer
of previously seen examples and uses them to augment the current batch during training.

Example usage:
    model = Er(backbone, loss, args, transform, dataset)
    loss = model.observe(inputs, labels, not_aug_inputs, epoch)

"""

# Copyright 2020-present, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch

from models.utils.continual_model import ContinualModel
from utils.args import add_rehearsal_args, ArgumentParser
from utils.buffer import Buffer


[docs] class Er(ContinualModel): """Continual learning via Experience Replay.""" NAME = 'er' COMPATIBILITY = ['class-il', 'domain-il', 'task-il', 'general-continual']
[docs] @staticmethod def get_parser(parser) -> ArgumentParser: """ Returns an ArgumentParser object with predefined arguments for the Er model. This model requires the `add_rehearsal_args` to include the buffer-related arguments. """ add_rehearsal_args(parser) return parser
def __init__(self, backbone, loss, args, transform, dataset=None): """ The ER model maintains a buffer of previously seen examples and uses them to augment the current batch during training. """ super(Er, self).__init__(backbone, loss, args, transform, dataset=dataset) self.buffer = Buffer(self.args.buffer_size)
[docs] def observe(self, inputs, labels, not_aug_inputs, epoch=None): """ ER trains on the current task using the data provided, but also augments the batch with data from the buffer. """ real_batch_size = inputs.shape[0] self.opt.zero_grad() if not self.buffer.is_empty(): buf_inputs, buf_labels = self.buffer.get_data( self.args.minibatch_size, transform=self.transform, device=self.device) inputs = torch.cat((inputs, buf_inputs)) labels = torch.cat((labels, buf_labels)) outputs = self.net(inputs) loss = self.loss(outputs, labels) loss.backward() self.opt.step() self.buffer.add_data(examples=not_aug_inputs, labels=labels[:real_batch_size]) return loss.item()