Source code for models.dualprompt_utils.vision_transformer

import math
import logging

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint

from timm.models import named_apply
from timm.layers import trunc_normal_

from backbone.vit import LoRAAttention, create_vision_transformer, VisionTransformer as MammothVP, get_init_weights_vit
from models.dualprompt_utils.prompt import EPrompt
from models.dualprompt_utils.attention import PreT_Attention


[docs] class VisionTransformer(MammothVP): def __init__( self, prompt_length=None, embedding_key='cls', prompt_init='uniform', prompt_pool=False, prompt_key=False, pool_size=None, top_k=None, batchwise_prompt=False, prompt_key_init='uniform', head_type='token', use_prompt_mask=False, use_g_prompt=False, g_prompt_length=None, g_prompt_layer_idx=None, use_prefix_tune_for_g_prompt=False, use_e_prompt=False, e_prompt_layer_idx=None, use_prefix_tune_for_e_prompt=False, same_key_value=False, args=None, **kwargs): if not (use_g_prompt or use_e_prompt): attn_layer = LoRAAttention elif not (use_prefix_tune_for_g_prompt or use_prefix_tune_for_e_prompt): # Prompt tunning attn_layer = LoRAAttention else: # Prefix tunning attn_layer = PreT_Attention super().__init__(args=args, attn_layer=attn_layer, **kwargs) self.prompt_pool = prompt_pool self.head_type = head_type self.use_prompt_mask = use_prompt_mask self.use_g_prompt = use_g_prompt self.g_prompt_layer_idx = g_prompt_layer_idx # num_g_prompt : The actual number of layers to which g-prompt is attached. # In official code, create as many layers as the total number of layers and select them based on the index num_g_prompt = len(self.g_prompt_layer_idx) if self.g_prompt_layer_idx is not None else 0 self.use_prefix_tune_for_g_prompt = use_prefix_tune_for_g_prompt self.use_e_prompt = use_e_prompt self.e_prompt_layer_idx = e_prompt_layer_idx num_e_prompt = len(self.e_prompt_layer_idx) if self.e_prompt_layer_idx is not None else 0 self.use_prefix_tune_for_e_prompt = use_prefix_tune_for_e_prompt if not self.use_prefix_tune_for_g_prompt and not self.use_prefix_tune_for_g_prompt: self.use_g_prompt = False self.g_prompt_layer_idx = [] if use_g_prompt and g_prompt_length is not None and len(g_prompt_layer_idx) != 0: if not use_prefix_tune_for_g_prompt: g_prompt_shape = (num_g_prompt, g_prompt_length, self.embed_dim) if prompt_init == 'zero': self.g_prompt = nn.Parameter(torch.zeros(g_prompt_shape)) elif prompt_init == 'uniform': self.g_prompt = nn.Parameter(torch.randn(g_prompt_shape)) nn.init.uniform_(self.g_prompt, -1, 1) else: if same_key_value: g_prompt_shape = (num_g_prompt, 1, g_prompt_length, self.num_heads, self.embed_dim // self.num_heads) if prompt_init == 'zero': self.g_prompt = nn.Parameter(torch.zeros(g_prompt_shape)) elif prompt_init == 'uniform': self.g_prompt = nn.Parameter(torch.randn(g_prompt_shape)) nn.init.uniform_(self.g_prompt, -1, 1) self.g_prompt = self.g_prompt.repeat(1, 2, 1, 1, 1) else: g_prompt_shape = (num_g_prompt, 2, g_prompt_length, self.num_heads, self.embed_dim // self.num_heads) if prompt_init == 'zero': self.g_prompt = nn.Parameter(torch.zeros(g_prompt_shape)) elif prompt_init == 'uniform': self.g_prompt = nn.Parameter(torch.randn(g_prompt_shape)) nn.init.uniform_(self.g_prompt, -1, 1) else: self.g_prompt = None if use_e_prompt and e_prompt_layer_idx is not None: self.e_prompt = EPrompt(length=prompt_length, embed_dim=self.embed_dim, embedding_key=embedding_key, prompt_init=prompt_init, prompt_pool=prompt_pool, prompt_key=prompt_key, pool_size=pool_size, top_k=top_k, batchwise_prompt=batchwise_prompt, prompt_key_init=prompt_key_init, num_layers=num_e_prompt, use_prefix_tune_for_e_prompt=use_prefix_tune_for_e_prompt, num_heads=self.num_heads, same_key_value=same_key_value) self.total_prompt_len = 0 if self.prompt_pool: if not self.use_prefix_tune_for_g_prompt: self.total_prompt_len += g_prompt_length * len(self.g_prompt_layer_idx) if not self.use_prefix_tune_for_e_prompt: self.total_prompt_len += prompt_length * top_k * len(self.e_prompt_layer_idx) self.head = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity() if self.weight_init != 'skip': self.init_weights(self.weight_init)
[docs] def init_weights(self, mode=''): assert mode in ('jax', 'jax_nlhb', 'moco', '') head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0. trunc_normal_(self.pos_embed, std=.02) if self.cls_token is not None: nn.init.normal_(self.cls_token, std=1e-6) named_apply(get_init_weights_vit(mode, head_bias), self)
[docs] def forward_features(self, x, task_id=-1, cls_features=None, train=False): x = self.patch_embed(x) if self.cls_token is not None: x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) x = self.pos_drop(x + self.pos_embed) if self.use_g_prompt or self.use_e_prompt: if self.use_prompt_mask and train: start = task_id * self.e_prompt.top_k end = (task_id + 1) * self.e_prompt.top_k single_prompt_mask = torch.arange(start, end).to(x.device) prompt_mask = single_prompt_mask.unsqueeze(0).expand(x.shape[0], -1) if end > self.e_prompt.pool_size: prompt_mask = None else: prompt_mask = None g_prompt_counter = -1 e_prompt_counter = -1 res = self.e_prompt(x, prompt_mask=prompt_mask, cls_features=cls_features) e_prompt = res['batched_prompt'] for i, block in enumerate(self.blocks): if i in self.g_prompt_layer_idx: if self.use_prefix_tune_for_g_prompt: g_prompt_counter += 1 # Prefix tunning, [B, 2, g_prompt_length, num_heads, embed_dim // num_heads] idx = torch.tensor([g_prompt_counter] * x.shape[0]).to(x.device) g_prompt = self.g_prompt[idx] else: g_prompt = None x = block(x, prompt=g_prompt) elif i in self.e_prompt_layer_idx: e_prompt_counter += 1 if self.use_prefix_tune_for_e_prompt: # Prefix tunning, [B, 2, top_k * e_prompt_length, num_heads, embed_dim // num_heads] x = block(x, prompt=e_prompt[e_prompt_counter]) else: # Pommpt tunning, [B, top_k * e_prompt_length, embed_dim] prompt = e_prompt[e_prompt_counter] x = torch.cat([prompt, x], dim=1) x = block(x) else: x = block(x) else: x = self.blocks(x) res = dict() x = self.norm(x) res['x'] = x return res
[docs] def forward_head(self, res, pre_logits: bool = False): x = res['x'] if self.class_token and self.head_type == 'token': if self.prompt_pool: x = x[:, self.total_prompt_len] else: x = x[:, 0] elif self.head_type == 'gap' and self.global_pool == 'avg': x = x.mean(dim=1) elif self.head_type == 'prompt' and self.prompt_pool: x = x[:, 1:(1 + self.total_prompt_len)] if self.class_token else x[:, 0:self.total_prompt_len] x = x.mean(dim=1) elif self.head_type == 'token+prompt' and self.prompt_pool and self.class_token: x = x[:, 0:self.total_prompt_len + 1] x = x.mean(dim=1) else: raise ValueError(f'Invalid classifier={self.classifier}') res['pre_logits'] = x x = self.fc_norm(x) res['logits'] = self.head(x) return res
[docs] def forward(self, x, task_id=-1, cls_features=None, train=False): res = self.forward_features(x, task_id=task_id, cls_features=cls_features, train=train) res = self.forward_head(res) return res
[docs] def resize_pos_embed(posemb, posemb_new, num_prefix_tokens=1, gs_new=()): # Rescale the grid of position embeddings when loading from state_dict. Adapted from # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224 # modify logging.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape) ntok_new = posemb_new.shape[1] if num_prefix_tokens: posemb_prefix, posemb_grid = posemb[:, :num_prefix_tokens], posemb[0, num_prefix_tokens:] # ntok_new -= num_prefix_tokens else: posemb_prefix, posemb_grid = posemb[:, :0], posemb[0] gs_old = int(math.sqrt(len(posemb_grid))) if ntok_new > gs_old ** 2: ntok_new -= gs_old ** 2 # expand cls's pos embedding for prompt tokens posemb_prefix = posemb_prefix.expand(-1, ntok_new, -1) if not len(gs_new): # backwards compatibility gs_new = [int(math.sqrt(ntok_new))] * 2 assert len(gs_new) >= 2 logging.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new) posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2) posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bicubic', align_corners=False) posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1) posemb = torch.cat([posemb_prefix, posemb_grid], dim=1) return posemb
[docs] def checkpoint_filter_fn(state_dict, model, adapt_layer_scale=False): """ convert patch embedding weight from manual patchify + linear proj to conv""" import re out_dict = {} if 'model' in state_dict: # For deit models state_dict = state_dict['model'] for k, v in state_dict.items(): if 'patch_embed.proj.weight' in k and len(v.shape) < 4: # For old models that I trained prior to conv based patchification O, I, H, W = model.patch_embed.proj.weight.shape v = v.reshape(O, -1, H, W) elif k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: # To resize pos embedding when using model at different size from pretrained weights v = resize_pos_embed( v, model.pos_embed, 0 if getattr(model, 'no_embed_class') else getattr(model, 'num_prefix_tokens', 1), model.patch_embed.grid_size ) elif adapt_layer_scale and 'gamma_' in k: # remap layer-scale gamma into sub-module (deit3 models) k = re.sub(r'gamma_([0-9])', r'ls\1.gamma', k) elif 'pre_logits' in k: # NOTE representation layer removed as not used in latest 21k/1k pretrained weights continue out_dict[k] = v return out_dict
[docs] def vit_base_patch16_224_dualprompt(pretrained=False, **kwargs): """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. """ model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = create_vision_transformer('vit_base_patch16_224', base_class=VisionTransformer, filter_fn=checkpoint_filter_fn, pretrained=pretrained, **model_kwargs) return model