Source code for models.dualprompt_utils.attention

# ------------------------------------------
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
# ------------------------------------------
# Modification:
# Added code for dualprompt implementation
# -- Jaeho Lee, dlwogh9344@khu.ac.kr
# ------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F


[docs] class PreT_Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop)
[docs] def forward(self, x, prompt=None): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) if prompt is not None: # prefix key, value prompt = prompt.permute(1, 0, 3, 2, 4).contiguous() # 2, B, num_heads, prompt_length, C // num_heads key_prefix = prompt[0] # B, num_heads, prompt_length, embed_dim // num_heads value_prefix = prompt[1] # B, num_heads, prompt_length, embed_dim // num_heads expected_shape = (B, self.num_heads, C // self.num_heads) assert (key_prefix.shape[0], key_prefix.shape[1], key_prefix.shape[3]) == expected_shape, f'key_prefix.shape: {key_prefix.shape} not match k.shape: {k.shape}' assert (value_prefix.shape[0], value_prefix.shape[1], value_prefix.shape[3]) == expected_shape, f'value_prefix.shape: {value_prefix.shape} not match v.shape: {v.shape}' k = torch.cat([key_prefix, k], dim=2) v = torch.cat([value_prefix, v], dim=2) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x